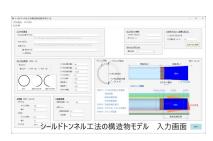
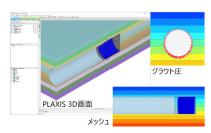
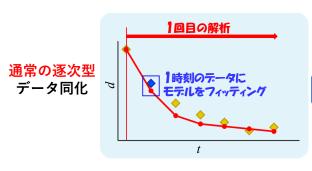
第10回「PLAXIS+tijモデル」プログラムセミナー

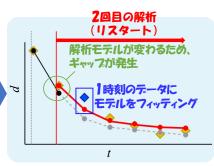

シールド掘進解析へのデータ同化手法の適用

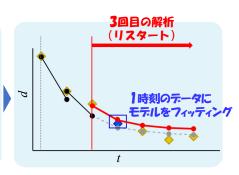
2025年11月6日(木)16:25~16:45 清水建設(株) 杉山 博一


WG3(シールドSWG)の活動内容・目標

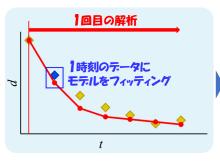
- ■シールド掘進解析の高度化
 - ●2次元弾性解析から3次元弾塑性解析へ
- ■解析ツールの利用拡大(労力削減)
 - ●JFIG-GEO (本WGの活動ではありません)
 - ●解析メッシュの追加・削除機能(<u>アイディア段階</u>)
- ■解析ツールの利用拡大(施工管理の合理化)

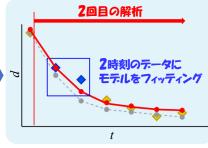


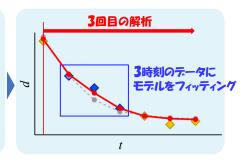

モデルの自動作成



各種荷重を考慮した段階施 工の設定

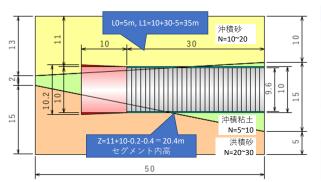

データ同化のイメージ





<mark>解析期間を</mark> 固定した データ同化 (本手法)

2025/11/6


第10回「PLAXIS+tijモデル」プログラムセミナー

検討手順

■データ同化手法のシールド掘進解析への適用性検討

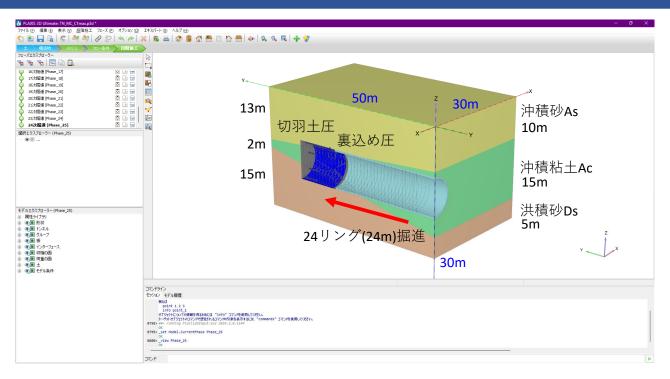
- ●実施工時の挙動と解析モデルの違い、原因の検討 ▶今回のモデル化で問題ないことを前提とした
- ●数値実験
 - ▶模擬モデルの作成(→観測値の取得)
 - ▶パラメータの感度解析
 - ▶模擬モデルを使用したデータ同化実験
 - ▶逆解析が成立するか(解ける問題であるか)の確認
 - ▶観測値の配置、個数、間隔等の妥当性
- ■実工事への適用方法の検討
- ■システム開発

検討モデル(模擬モデル)

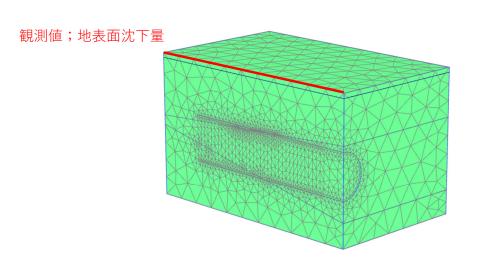
 地盤の条件 E=700N (MIN) ポアソン比砂0.3、粘土0.4 単位重量(湿潤):砂18kN/m³、粘土16kN/m³ 単位重量(飽和):砂19kN/m³、粘土17kN/m³ 強度定数(C,Φ,ψ):仮値 ※地下水位はDL-1.0m シールド機 E=2.0e8 kN/m² y=77.0 kN/m³ T=0.603 m 						
モデル直径9.6×π×T×長さ10m×77.0=14,000 kN セグメント						
E=3.0e7 kN/m²、v=0.2、γ=24.5(仮定)						

項目	設定値案	備考(JFIG-GEO用)
解析領域	縦30m、横50m、奥行き30m(半断面)	
地層構成	上から沖積砂(N=10~20)、沖積粘土 (N=5~10)、洪積砂(N=20~30)のイメージ	
シールド機	外径10.0m、長さ10m 土被り11m 重量;14MN(土重量と同程度とした)	初期掘進長10m(=マシン長さ)
シールド機収縮量	シールド機先端で10.2m シールド機降誕で10.0m	表面収縮度2% 表面収縮区間10m
セグメント	外径9.6m、内径8.8m、厚さ0.4m セグメント幅1m	既設長5m、残り25m(リング)分の掘進解析となる
裏込め (グラウト)	外径10m、厚さ0.2m	シールド機に隣接する 区間(1m)で裏込め圧
切羽圧	天端で150kN/m2、深度増分18kN/m2/m	
裏込め圧	天端で180kN/m2、深度増分18kNm2/m	

		構成則	N値	E[kN/m²]	$C(C')[kN/m^2]$	Φ(Φ')[deg]
1層目	As	MC	10~20	7,000	0.001	30
2層目	Ac	MC	5~10	5,000	45	0
3層目	Ds	MC	20~30	14,000	0.001	35


→ <mark>JFIG-GEO</mark>でPLAXIS解析モデルを作成

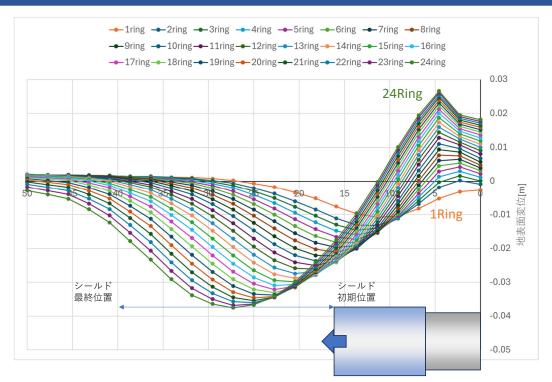
2025/11/6


第10回「PLAXIS+tijモデル」プログラムセミナ-

6

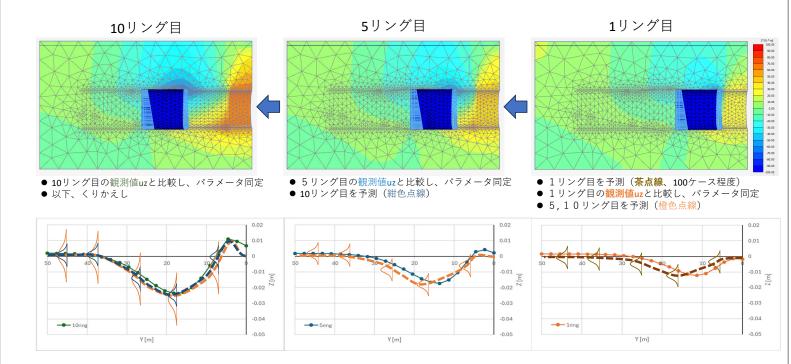
解析モデル(PLAXIS 3D + JFIG-GEO)

解析結果 鉛直方向変位uz(正解值)



2025/11/6

第10回「PLAXIS+tijモデル」プログラムセミナー


Q

観測値:地表面変位Uzの掘進リング毎の変化

第10回「PLAXIS+tijモデル」プログラムセミナー

シールド掘進を対象としたデータ同化のイメージ

2025/11/6

第10回「PLAXIS+tijモデル」プログラムセミナー

10

検討手順

■データ同化手法のシールド掘進解析への適用性検討

- ●実施工時の挙動と解析モデルの違い、原因の検討 ▶今回のモデル化で問題ないことを前提とした
- ●数値実験
 - ▶模擬モデルの作成 (→観測値の取得)
 - ▶パラメータの感度解析
 - ▶模擬モデルを使用したデータ同化実験
 - ▶逆解析が成立するか(解ける問題であるか)の確認
 - ▶観測値の配置、個数、間隔等の妥当性
- ■実工事への適用方法の検討
- ■システム開発

解析パラメータ(赤字)と、感度解析用パラメータ

		構成則	N値	E[kN/m²]		C(C')[kN/m ²]			Φ(Φ')[deg]			
1層目	As	MC	10~20	2,000~	7,000	~30,000		0.001	~5		30	~35.5
2層目	Ac	MC	5~10	1,000~	5,000	~20,000	31.25~	45	~62.5		0	~10
3層目	Ds	MC	20~30	5,000~	14,000	~50,000		0.001	~10		35	~39

このケースのみ 非排水(A);c', φ' を設定

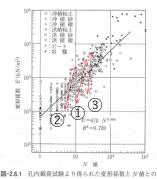


図-2.6.1 孔内載荷試験より得られた変形係数と N値との関係 (土谷・豊岡⁶⁰に加筆修正)

qu=12.5N Terzaghi&Peck 地盤調査の方法と解説

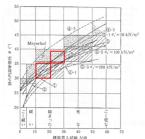


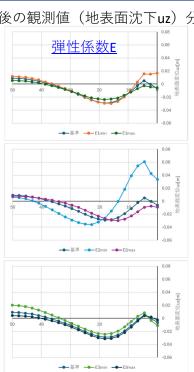
図-2.5.20 N値と砂の内部摩擦角の関係 (地盤工学会(3))

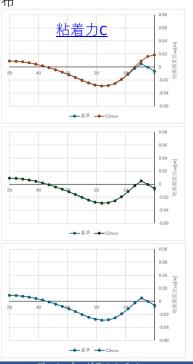
地盤調査の方法と解説、pp.305 φ=V(15N)+15≤45(道路橋)

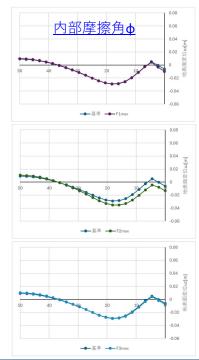
地盤調査の方法と解説、 第8章,p.687 E=670 N^{0.986}

2025/11/6

第10回「PLAXIS+tijモデル」プログラムセミナー

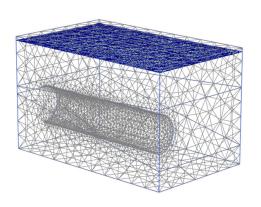

12


データ同化の事前検討;パラメータ感度の確認


■ 10リング目掘進後の観測値(地表面沈下uz)分布

1層目 (As) 2層目 (Ac) 3層目 (Ds)

2025/11/6



第<u>10回「PL</u>AXIS+tijモデル」

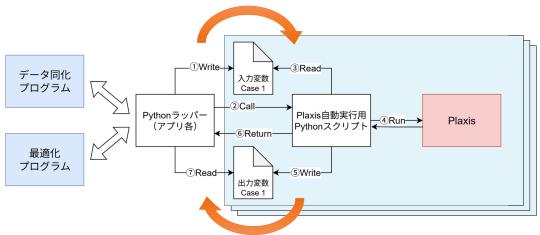
模擬モデルでの塑性点

- ■塑性点は発進部とシールド近傍(切羽、裏込め)のみ
- ■粘着力Cと摩擦角Φの変位に与える影響は小さいことが判明

- ■切羽圧、裏込め圧もデータ同化時のパラメータに追加する
 - ●切羽圧、裏込め圧は施工時も変動するため
 - ●ただし、パラメータが増えるとデータ同化は複雑になる

2025/11/6

第10回「PLAXIS+tijモデル」プログラムセミナー


1/

今後の予定

- ■データ同化手法のシールド掘進解析への適用性検討
 - ●実施工時の挙動と解析モデルの違い、原因の検討 ▶今回のモデル化で問題ないことを前提とした
 - ●数値実験
 - ▶模擬モデルの作成 (→観測値の取得)
 - ▶パラメータの感度解析
 - ▶模擬モデルを使用したデータ同化実験
 - ▶逆解析が成立するか(解ける問題であるか)の確認
 - ▶観測値の配置、個数、間隔等の妥当性
- ■実工事への適用方法の検討
- ■システム開発

PLAXISとデータ同化プログラムの連携

パラメータスタディの自動実行

● 外部プログラムと連携して、PLAXISによるパラメータスタディを自動 実行し、モデルフィッティングやパラメータ最適化を行うことが可能。

2025/11/6

第10回「PLAXIS+tijモデル」プログラムセミナー

16

おわり

ご清聴ありがとうございました。