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ABSTRACT

A simple and uniˆed model to describe some features of soil behavior in one dimensional condition is presented in
another related paper (Nakai et al., 2011). In the present paper, this one-dimensional model is extended to describe not
only the soil features explained in the related paper three-dimensionally (3D), but also to explain other soil features
found in multi-dimensional conditions, such as shear behavior considering the in‰uence of intermediate principal
stress on the deformation and strength of soils, and the positive and negative soil dilatancy. Firstly, the ˆrst step in ex-
tending any kind of one-dimensional model to a three-dimensional one is explained in detail: the signiˆcance of tij con-
cept and its stress invariants (tN and tS) is explained and compared with the idea of ordinary stress invariants (p and q)
used in the Cam clay model. Then, the advanced elastoplastic relations (stages I to III) in the one-dimensional condi-
tion presented in the related paper are re-formulated as three-dimensional models—e.g., a model for over consolidated
soil, a model for structured soil and a model which considers time-dependent behavior. The three-dimensional models
for over consolidated soil (stage I) and structured soil (stage II) are formulated so as to coincide with the subloading tij

model developed by Nakai and Hinokio (2004) and by Nakai (2007), respectively. The validity of the models in stage I
and stage II is checked by simulations of various shear tests for sands with diŠerent void ratios and for over consolidat-
ed and natural clays under drained and undrained conditions. The model in stage III is veriˆed by simulations of shear
tests with diŠerent strain rates, and by simulating creep tests and others, not only for normally consolidated clay but
also for non-structured and structured over consolidated clays under drained and undrained conditions.

Key words: bonding, clay, constitutive equation of soil, creep, deformation, density, elastoplasticity, (intermediate
principal stress), over consolidated soil, rheology, sand, shear, strength, structured soil, three-dimensional condition,
time-dependent behavior (IGC: D5/D6)

INTRODUCTION

As stated in another related paper (Nakai et al., 2011),
the following important features of soil behavior cannot
be described by the Cam clay model (e.g., Schoˆeld and
Wroth, 1968).
(1) In‰uence of the intermediate principal stress on the

deformation and strength of geomaterials;
(2) Stress path dependency of the direction of plastic

‰ow;
(3) Positive dilatancy during strain hardening;
(4) Stress induced anisotropy and cyclic loading;
(5) Inherent anisotropy;
(6) In‰uence of density and/or conˆning pressure on

the deformation and strength;
(7) Behavior of structured soils such as naturally

deposited clays;
(8) Time-dependent behavior and rheological character-

istics;
(9) Temperature-dependent behavior;

(10) Behavior of unsaturated soils;
(11) In‰uence of particle crushing.

The method to take into consideration features (6) to
(8) was explained in the related paper for one-dimen-
sional models. Further, features (9) to (11) also can be de-
scribed by using more or less the same procedure adopted
to include features (6) to (8). On the other hand, features
(1) to (5) can be observed only in multi-dimensional con-
ditions.

The Geotechnical group of Nagoya Institute of Tech-
nology (NIT) developed three-dimensional elastoplastic
models for soils that can describe features (1) to (3)—e.g.,
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Fig. 1. Deˆnitions of p and q

Fig. 2. Deˆnitions of dev and ded

Fig. 3. Initial and current yield surfaces in the p-q plane and direction
of plastic ‰ow in an ordinary model such as Cam clay model
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tij-clay model (Nakai and Matsuoka, 1986), tij-sand model
(Nakai, 1989) and subloading tij model (Nakai and
Hinokio, 2004). These models are particularly good at
dealing with feature ``(1) the in‰uence of intermediate
principal stress on the deformation and strength'' using tij

concept (Nakai and Mihara, 1984). In the present paper,
the meaning of the tij concept is explained simply by com-
paring it with the ordinary stress concept used in the Cam
clay model and many other models. Also a straightfor-
ward way for extending one-dimensional models to three-
dimensional ones is indicated. Then, an extension of the
one-dimensional elastoplastic models, which can describe
features (6) to (8), is shown. The validity of the present
models is conˆrmed by the simulations of various kinds
of drained and undrained shear tests on normally consoli-
dated soil, over consolidated soil and structured soil un-
der general stress conditions.

OUTLINE OF THREE-DIMENSIONAL EXTENSION
BASED ON AN ORDINARY CONCEPT

Cam Clay Model and Its Stress and Strain Increment
Invariants

Most of the constitutive models for soils, like the Cam
clay model (Schoˆeld and Wroth, 1968; Roscoe and
Burland, 1968), have been formulated using stress invari-
ants such as the mean stress p and the deviatoric stress q
and the correspondent strain increment invariants like the
volumetric strain increment dev and the deviatoric strain
increment ded. These invariants are deˆned by the normal
and parallel components of the stress and the strain incre-
ments with respect to the octahedral plane ( see Figs. 1
and 2) and their expression is given by Eqs. (1) to (4):

p＝
1
3

ON＝
1
3

(s1＋s2＋s3)＝
1
3

sijdij (1)

q＝
3
2

NP＝
1
2

(s1－s2)2＋(s2－s3)2＋(s3－s1)2

＝
3
2

(sij－pdij)(sij－pdij) (2)

dev＝ 3 O?N?＝de1＋de2＋de3＝deijdij (3)

ded＝
2
3

N?P?

＝
2
3

(de1－de2)2＋(de2－de3)2＋(de3－de1)2

＝
2
3 Ødeij－

dev

3
dij»Ødeij－

dev

3
dij» (4)

Here, s1, s2 and s3 are the three principal stresses, sij is
the stress tensor, dij is the unit tensor, de1, de2 and de3 are
the three principal strain increments, and deij is the strain
increment tensor.

Figure 3 shows the yield surfaces of an ordinary
elastoplastic model, such as the Cam clay model,
represented on the p–q plane. The broken curve and solid
curve indicate the initial and current yield surfaces when
the stress condition moves from the initial state I to the

current state P with elastoplastic deformation. Here, p0

and p1 are the values of p on p-axis for the initial and cur-
rent yield surfaces, respectively, which determine the size
of these surfaces. The yield surface (yield function) in
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Fig. 4. Change of void ratio in isotropic compression from p＝p0 to p
＝p1 in normally consolidated soils
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most of the ordinary elastoplastic models, such as illus-
trated by the solid curve in Fig. 3, is represented by a
function of the mean stress p and the stress ratio h in the
following form:

ln p＋w(h)－ln p1＝ln
p
p0
＋w(h)－ln

p1

p0
＝0

(where h＝q/p) (5)

where, z(h) is an increasing function of h which satisˆes
the condition z(0)＝0. For example, the stress ratio func-
tion z(h) is given as follows for the original Cam-clay
model (Schoˆeld and Wroth, 1968) and the modiˆed
Cam-clay model (Roscoe and Burland, 1968):

w(h)＝
1
M

h (original) (6)

w(h)＝ln
M2＋h2

M2 (modiˆed) (7)

where, M is the stress ratio h at the critical state.
Now, in the Cam clay model, the size of yield surface is

related to the plastic change in void ratio (－De)p or the
plastic volumetric strain ep

v. When a normally consolidat-
ed soil is compressed isotropically from p＝p0 to p＝p1,
the void ratio changes from eN0 to eN on the normal con-
solidation line (NCL) as shown in Fig. 4. Then, the plas-
tic change of void ratio or plastic volumetric strain can be
expressed as:

(－De)p＝(e0－e)－(－De)e＝(eNO－eN)－(－De)e

＝(－De)－(－De)e＝(l－k) ln
p1

p0

or

ep
v＝

(－De)p

1＋e0
＝

l－k
1＋e0

ln
p1

p0









(8)

Here, l and k denote compression index and swelling in-
dex, and e0 and e are void ratio at p＝p0 and p＝p1.
Throughout this paper, superscripts p and e imply the
plastic and elastic components of the quantities, respec-
tively. From Eqs. (5) and (8), the well-known yield func-
tion of Cam clay model is obtained:

(l－k) {ln
p
p0
＋w(h)}－(－De)p＝0 or

l－k
1＋e0 {ln

p
p0
＋w(h)}－ep

v＝0 (9)

Equation (9) may be rewritten as:

F＝H or f＝F－H＝0 (10)

Here, F and H denote the term related to stress change
and the term related the plastic change in void ratio, re-
spectively, as follows:

F＝(l－k) ln
p1

p0
＝(l－k) {ln

p
p0
＋w(h)}

(where h＝q/p) (11)
H＝(－De)p＝(1＋e0)・ep

v (12)

Comparing Eqs. (10) to (12) with the corresponding
equations in the one-dimensional model described in the
related paper (Nakai et al., 2011), it can be seen that the
yield function of the Cam clay model is easily obtained
simply by replacing s0 and s in the function F of the one-
dimensional model by the mean quantities p0 and p1 in
three-dimensional conditions as shown in Eq. (11).

The plastic strain increment can be calculated by as-
suming an associated ‰ow rule in the ordinary stress space
( see Fig. 3), thus obtaining:

dep
ij＝L

&F
&sij

＝L Ø&F
&p

&p
&sij

＋
&F
&h

&h
&sij

» (13)

From the consistency condition (df＝0), the proportion-
ality constant L is given by

L＝
dF

(1＋e0)
&F

&skk

＝
dF
hp Øwhere dF＝

&F
&sij

dsij» (14)

Here, hp represents a plastic modulus. From Eqs. (11)
and (13), the following relation between stress ratio and
plastic strain increment ratio (stress-dilatancy relation) is
obtained:

dep
v

dep
d
＝

&F
&p

＋
&F
&h

&h
&p

&F
&h

&h
&q

＝
1－z?(h)・h

z?(h)
(15)

where z?(h) means dz(h)/dh. The stress-dilatancy relation
for the original and modiˆed Cam clay models are ex-
pressed as follows, from Eqs. (6), (7) and (15):

dep
v

dep
d
＝M－h (original) (16)

dep
v

dep
d
＝

M2－h2

2h
(modiˆed) (17)

The shape of the yield surfaces for the two models in the
p-q plane and the direction of plastic strain increments
are shown in Fig. 5, and the stress-dilatancy relation for
the two models are shown in Fig. 6. Also, the shapes of
yield surfaces which are formulated using p and q are in-
evitably circular on the octahedral plane, and therefore
the direction of plastic strain increments on the octa-
hedral plane is always in the radial direction as shown in
Fig. 7.

The elastic strain increment is given by the generalized
Hooke's law:
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Fig. 5. Yield surface of Cam clay model on the p-q plane

Fig. 6. Stress-dilatancy relation of the Cam clay model

Fig. 7. Yield surface of the Cam clay model and direction of plastic
‰ow on the octahedral plane

Fig. 8. Observed stress-strain relation of drained triaxial compression
and extension tests on normally consolidated clay

Fig. 9. q/p: dev/ded relation for drained triaxial compression and ex-
tension tests on a normally consolidated clay

1152 NAKAI ET AL.

dee
ij＝

1＋ne

Ee
dsij－

ne

Ee
dskkdij (18)

The Young's modulus Ee is expressed in terms of the
swelling index k and the Poisson's ratio ne as:

Ee＝
3(1－2ne)(1＋e0)p

k
(19)

Therefore, the total strain increment is given by:

dee
ij＝dee

ij＋dep
ij (20)

The loading condition of a usual elastoplastic models is
expressed as follows:

{dep
ij»0 if f＝0 and dFÀ0

dep
ij＝0 otherwise

(21)

The yield surface is ˆxed when no plastic strain occurs.

Consideration of Three-dimensional Stress-strain Behav-
ior of Soils

Figure 8 shows the observed results of drained triaxial
compression (s1Às2＝s3) and triaxial extension (s1＝s2

Às3) tests on normally consolidated Fujinomori clay un-
der constant mean principal stress (p＝196 kPa), in terms
of the relation between stress ratio (q/p), deviatoric
strain (ed) and volumetric strain (ev). It can be seen that
the deformation and strength of soils in three-dimen-
sional (3D) stress conditions cannot be described unique-
ly using these invariants. For the same tests, Fig. 9 shows
the observed stress-dilatancy relation plotted using the
above stress and strain increment invariants. For simplic-
ity, the strain increment ratio can be calculated using the
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Fig. 10. Observed direction of ded on the octahedral plane for drained
true triaxial tests on a normally consolidated clay
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total strain increments since the elastic strain increments
are much smaller than the plastic strain increments under
shear loadings. Because there is no unique relation be-
tween dev/ded and q/p in Fig. 9, the shape of yield sur-
face on the p-q plane is dependent on the relative magni-
tude of the intermediate principal stress. Figure 10 shows
the directions and the magnitudes of the observed shear
strain increments on the octahedral plane for the true
triaxial tests (s1Às2Às3) with diŠerent relative values of
s2 (u＝159, 309and 459). Here, the length of each line is
proportional to the value of the shear strain increment
divided by the shear-normal stress ratio increment on the
octahedral plane. In the ˆgure, u denotes the angle be-
tween s1-axis and the corresponding radial stress path on
the octahedral plane, where u＝09and 609represent the
stress paths under triaxial compression and triaxial exten-
sion conditions, respectively. Note that the direction of
the observed shear strain increments deviates leftward
from the direction of shear stress (radial direction) with
the increase of stress ratio under three diŠerent principal
stresses. Since the shape of plastic potential (yield sur-
face) formulated using the stress invariants (p and q) is a
circle on the octahedral plane as shown in Fig. 7, such
deviation of the direction of strain increments cannot be
described. Therefore, the constitutive models which are
formulated using these invariants are not capable of
describing properly the in‰uence of the intermediate prin-
cipal stress on the deformation and strength characteris-
tics of soils, even if the initial stress condition and the
density of soils are the same.

INTRODUCING THE INFLUENCE OF
INTERMEDIATE PRINCIPAL STRESS IN
MODELING

To describe the deformation and strength characteris-
tics of soils uniquely under 3D stress conditions, Nakai
and Matsuoka (1983) proposed an extended concept of
the spatially mobilized plane (SMP*). Based on the
generalized concept of the SMP*, Nakai and Mihara
(1984) developed a method to formulate an elastoplastic
model in which the in‰uence of the intermediate principal

stress can be automatically taken into consideration, by
introducing the modiˆed stress tensor tij. In this section,
the thee-dimensional modeling based on the tij concept is
explained from the standpoint of the simple and uniˆed
method to extend one-dimensional models for geomateri-
als to general three-dimensional ones. Also, the physical
meaning of the tij concept is discussed here.

Deˆnition of Modiˆed Stress Tensor tij and Its Stress and
Strain Increment Invariants

In the tij concept, attention is focused on the so-called
spatially mobilized plane (SMP; Matsuoka and Nakai,
1974) instead of the octahedral plane used in ordinary
models, such as the Cam clay. The plane ABC in Fig. 11
is the spatially mobilized plane (SMP) in the three-dimen-
sional stress space, where axes I, II and III imply the
direction of three principal stresses. At each of three the
sides AB, AC and BC of plane ABC, the shear-normal
stress ratio is maximized between two principal stresses as
shown in Fig. 12. It can be seen that the values of the
coordinate axes intersected by the plane ABC (SMP) are
proportional to the square root of the ratio between the
corresponding principal stresses, because the following
equation holds:

tan Ø459＋
qmoij

2 »＝ 1＋sin qmoij

1－sin qmoij
＝

si

sj

(i, j＝1, 2, 3; iºj) (22)

Therefore, the SMP coincides with the octahedral plane
only under isotropic stress conditions and varies with
possible changes of stress ratio. The direction cosines (a1,
a2 and a3) of the normal to the SMP, and the unit tensor
whose principal values are determined by these direction
cosines are expressed as follows (Nakai, 1989):

a1＝
I3

I2s1
, a2＝

I3

I2s2
, a3＝

I3

I2s3
(23)

aij＝
I3

I2
・r－1

ij ＝
I3

I2
・c－1

ik (skj＋Ir2dkj)

where c－1
ik ckj＝dij, ckj＝Ir1skj＋Ir3dkj (24)

where si (i＝1, 2, 3) are the three principal stresses, I1, I2,
and I3 are the ˆrst, second and third invariants of sij, and
Ir1, Ir2 and Ir3 are the ˆrst, second and third invariants of
rij, which is the square root of the stress tensor or rikrkj＝
sij. These invariants are expressed using principal stresses
and stress tensors as

I1＝s1＋s2＋s3＝sii

I2＝s1s2＋s2s3＋s3s1＝
1
2

s(sii)2－sijsjit







(25)

I3＝s1s2s3＝eijksi1sj2sk3

Ir1＝ s1＋ s2＋ s3＝rii

Ir2＝ s1s2＋ s2s3＋ s3s1＝
1
2

s(rii)2－rijrjit







(26)

Ir3＝ s1s2s3＝eijkri1rj2rk3

where eijk is the permutation tensor. The detailed expres-
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Fig. 11. Spatially mobilized plane (SMP) in three-dimensional space

Fig. 12. Three Mohr's stress circles under three diŠerent principal
stresses

Fig. 13. Deˆnitions of tN and tS

Fig. 14. Deˆnitions of de*N and de*S
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sion of aij is also described in the paper by Nakai and
Hinokio (2004). As can be seen from the above equation,
aij is a function of stress ratio and its principal axes coin-
cide with those of sij. The modiˆed stress tensor tij is then
deˆned by the product of aik and skj as follows:

tij＝aikskj (27)

Its principal values are given by

t1＝a1s1, t2＝a2s2, t3＝a3s3 (28)

In conventional models, the stress invariants (p and q)
and strain increment invariants (dev and ded) are given by
the normal and parallel components of the ordinary
stress and strain increment with respect to the octahedral
plane ( see Figs. 1 and 2). On the other hand, the stress in-
variants (tN and tS) and strain increment invariants (de*N,
de*S) in the tij concept are deˆned as the normal and
parallel components of the modiˆed stress tij and the
strain increment with respect to the SMP ( see Figs. 13
and 14). Hence, these invariants are given by:

tN＝ON＝t1a1＋t2a2＋t3a3＝tijaij (29)

tS＝NT＝ t 2
1＋t 2

2＋t 2
3－(t1a1＋t2a2＋t3a3)2

＝ tijtij－(tijaij)2 (30)

de*N＝O?N?＝de1a1＋de2a2＋de3a3＝deijaij (31)

de*S＝N?T?＝ de2
1＋de2

2＋de2
3－(de1a1＋de2a2＋de3a3)2

＝ deijdeij－(deijaij)2 (32)

A comparison between the stress and strain increment
tensors and their invariants used in the ordinary concept
and the tij concept is shown in Table 1.

Modeling the In‰uence of the Intermediate Principal
Stress

To consider the in‰uence of the intermediate principal
stress on the deformation and strength of soils in con-
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Table 1. Comparison between tensors and scalars related to stress and
strain in the ordinary concept and the tij concept

ordinary concept tij concept

tensor normal to
reference plane

dij

(unit tensor)
aij

(tensor normal to SMP)
stress tensor sij tij

mean stress p＝sijdij/3 tN＝tijaij

deviatoric stress tensor sij＝sij－pdij t?ij＝tij－tNaij

deviatoric stress q＝ (3/2)sijsij ts＝ t?ijt?ij
stress ratio tensor hij＝sij/p xij＝t?ij/tN

stress ratio h＝q/p X＝tS/tN

strain increment normal
to reference plane dev＝deijdij deN*＝deijaij

deviatoric strain
increment tensor deij＝deij－devdij/3 de?ij＝deij－deN*aij

strain increment parallel
to reference plane ded＝ (2/3)deijdeij deS*＝ de?ijde?ij

Fig. 15. Initial and current yield surfaces in the tN-tS plane and direc-
tion of plastic ‰ow for the model based on the tij concept
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stitutive modeling of soils, all that is needed is to formu-
late the yield function using the stress invariants (tN and
tS) instead of (p and q) and to assume the ‰ow rule in the
modiˆed stress tij space instead of the ordinal sij space
(Nakai and Mihara, 1984).

Figure 15 shows the yield surfaces of an elastoplastic
model based on the tij concept, represented on the tN－tS

plane. The broken curve and solid curve indicate the ini-
tial and current yield surfaces when the stress condition
moves from the initial state I (tN＝tN0) to the current state
P (tN＝tN, X＝tS/tN) with elastoplastic deformation.
Here, tN0 and tN1 are the values of tN on the tN-axis, which
represent the sizes of the initial and current yield surfaces.
The values of p0 and p1 in the ordinary model in Fig. 3
have a similar meaning. The yield function for the model
based on the tij concept is given as follows by only replac-
ing s0 and s in one-dimensional models not with p0 and p1

but with tN0 and tN1, respectively.

F＝H or f＝F－H＝0 (33)

F＝(l－k) ln
tN1

tN0
＝(l－k) {ln

tN

tN0
＋w(X)}

(where X＝tS/tN) (34)
H＝(－De)p＝(1＋e0)・ep

v (35)

where, z(X) is an increasing function of stress ratio X(＝
tS/tN) which satisˆes the condition z(0)＝0, in the same
way as for z(h) in the ordinary model. Then, the plastic
strain increment is calculated using an associated ‰ow
rule in tij space ( see Fig. 15), as follows:

dep
ij＝L

&F
&tij

＝L Ø &F
&tN

&tN
&tij

＋
&F
&X

&X
&tij» (36)

The proportionality constant L in the above equation is
obtained from the consistency condition (df＝0) just as it
is in the ordinary models.

L＝
dF

(1＋e0)
&F
&tkk

＝
dF
hp Øwhere dF＝

&F
&sij

dsij» (37)

The full expressions of the derivative of F with respect to

tij and sij are shown in APPENDIX I.
The elastic strain increment dee

ij is usually given by Eqs.
(18) and (19). Considering that the elastic volumetric
strain is governed not by the usual mean stress p but by
the mean stress tN based on the tij concept in the same way
as the plastic strain, then the elastic strain increment can
be expressed by the following equation:

dee
ij＝

1＋ne

Ee
d Ø sij

1＋X 2»－ne

Ee
d Ø skk

1＋X 2» dij (38)

This equation derives from the fact that the following
equation always holds between p and tN:

tN＝
p

1＋X 2 (39)

The elastic modulus Ee is expressed in terms of the swell-
ing index k of e-ln tN relation and Poisson's ratio ne as:

Ee＝
3(1－2ne)(1＋e0)tN

k
(40)

As an additional comment, in the elastoplastic region, the
calculated stress-strain relation does not depend so much
on whether or not Eq. (18) or Eq. (38) is used as the elas-
tic component. The constitutive model for normally con-
solidated soils presented here essentially corresponds with
the tij-clay model (Nakai and Matsuoka, 1986).

Now, in recent models (Chowdhury and Nakai, 1998;
Nakai and Hinokio, 2004), the following equation is
adopted for the function of stress ratio z(X) in Eq. (34):

w(X)＝
1
b Ø X

M*»
b

(41)

where b(»1) is a parameter which controls the shape of
the yield function. When b＝1, the shape of yield func-
tion is the same as that of the original Cam-clay model.
From Eqs. (34), (36) and (41), the following stress-
dilatancy relation holds:

de*p
N

de*p
S
＝

&F
&tN

＋
&F
&X

&X
&tN

&F
&X

&X
&tS

＝
1－z?(X)・X

z?(X)
＝

(M*)b－X b

X b－1 (42)

Figure 16 illustrates this equation in terms of the relation
between X＝tS/tN and Y＝deN*p/deS*p. Here, M* implies
the intercept with the vertical axis and is calculated using
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Fig. 16. Stress-dilatancy relation of recent tij model

Fig. 17. tS/tN vs. deN*/deS* relation of drained triaxial compression and
extension tests on a normally consolidated clay

Fig. 18. Shape of yield surface in the principal spaces of sij and tij

(Pedroso et al., 2005)
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XCS and YCS, which are the stress ratio X and the plastic
strain increment ratio Y at critical state (dep

v＝0).

M*＝(X b
CS＋X b－1

CS YCS)1/b (43)

The values of XCS and YCS are expressed as follows using
the principal stress ratio at critical state in triaxial com-
pression RCS＝(s1/s3)CS(comp) (Nakai and Mihara, 1984):

XCS＝
2
3 Ø RCS－

1
RCS

» (44)

YCS＝
1－ RCS

2 ( RCS＋0.5)
(45)

The dots in Fig. 17 shows the observed stress-dilatancy
relation of the same tests shown in Fig. 9, arranged in
terms of the relation between the stress ratio tS/tN and the
strain increment ratio de*N/de*S. It can be seen that
although the relation between q/p and dev/ded in Fig. 9 is
strongly in‰uenced by the intermediate principal stress,
the stress-dilatancy relation based on tij concept is in-
dependent of the intermediate principal stress. Since the
magnitude of the elastic strain increments is much smaller
than that of the plastic strain increments under shear
loading, the stress-dilatancy relation in Eq. (42) also
holds uniquely. Figure 18 shows a view of the yield sur-
face of tij model in the principal spaces of sij and tij
(Pedroso et al., 2005). The shape of the yield surface on
the octahedral plane in the sij space is a rounded triangle
and corresponds to that of the SMP criterion (Matsuoka
and Nakai, 1974) ( see diagram (c)). The shape of the yield
surface in the tij space is also an oval, though a little more
rounded, but it is not a circle ( see diagram (d)). There-
fore, the tij concept can describe not only the observed
uniqueness of stress-dilatancy relation (Fig. 17) but also
the observed deviation of plastic ‰ow vector from the
direction of shear stress on the octahedral plane (Fig. 10).
Employing the tij concept—i.e., the stress term F in the
yield function is formulated in such a form as Eq. (34),
and assuming the ‰ow rule in the tij space as Eq. (36), the
in‰uence of intermediate principal stress in constitutive
modeling can be automatically taken into consideration.

The Meaning of the tij Concept
The meaning of the tij concept is discussed here, focus-

ing mostly on the microscopic point of view. Several

researchers have shown that induced anisotropy of soils
developed with the change of stresses is characterized by
the frequency distribution of the inter-particle contact
angles. It has then been shown from microscopic obser-
vation (e.g., Oda, 1972) and DEM simulation (e.g., Mae-
da et al, 2006) that, as the stress ratio increases, the
average directions normal to the inter-particle contacts
gradually concentrate in the same direction as the major
principal stress (s1). Based on the results of biaxial tests
on a stack of photoelastic bars, Satake (1984) pointed out
that the principal values (f1, f2) of the so-called fabric
tensor fij, which represents the relative distribution of the
number of vectors normal to the inter-particle contacts, is
approximately proportional to the square root of the cor-
responding principal stresses. Maeda et al. (2006) also
carried out two-dimensional (2D) DEM simulations of
biaxial tests and obtained the same results, expressed as:
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Fig. 19. Anisotropy and its expression
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f1

f2
¥Øs1

s2
»

0.5

(46)

Employing a fabric tensor, Satake (1982) also proposes
the following modiˆed stress tensor s*ij to analyze the be-
havior of granular materials:

s*ij＝
1
3

f－1
ik skj (47)

Figure 19(a) shows a schematic distribution of inter-par-
ticle contacts in the 2D condition. Considering the e-
quivalent continuum, such material exhibits anisotropy
since the stiŠness in the s1 direction is larger than that in
the s2 direction as the stress ratio increases, as shown in
diagram (b). When adopting an elastoplastic theory, it is
reasonable to treat the soil as an isotropic material by in-
troducing the modiˆed stress tij, which takes induced
anisotropy into consideration. This is because the nor-
mality rule, where the direction of plastic ‰ow is normal
to the yield surface (plastic potential) holds in the isotrop-
ic space, like the transformed space used to analyze
seepage problems in anisotropic ground and others. As
shown in Eq. (23), the principal values of aij are inversely
proportional to the square root of the respective principal
stresses, therefore:

a1:a2＝
1
s1

:
1
s2

(48)

By comparison, it can be noted that aij corresponds to the
inverse of the fabric tensor in Eq. (46), and tij deˆned by
Eq. (27) corresponds to the modiˆed stress introduced by
Satake (1982) in Eq. (47). As shown in diagram (c) of Fig.
19, the stress ratio t1/t2 in the modiˆed stress space is
smaller than the stress ratio s1/s2 in the ordinary stress
space since a1 is smaller than a2, as Eq. (48) shows. Then,
it is reasonable to assume that the ‰ow rule (normality
condition) holds not in the sij space but in the tij space,
because the condition of the anisotropic material under
the anisotropic stress ratio in diagram (b) can be consi-
dered the same as that of the isotropic material under the

lower stress ratio, as shown in diagram (c) in Fig. 19. The
above explanation of modiˆed stress holds for the case
where anisotropy is developed under monotonic loading
without the rotation of principal stress axes. A method to
determine the modiˆed stress under general cyclic loading
with the rotation of the principal stress axes is described
in another paper (Kikumoto et al., 2009).

Next, the reason for deˆning the stress and strain incre-
ment invariants used in the tij concept as the normal and
parallel components of the stress and strain increments
with respect to the SMP instead of the octahedral plane is
explained. Since the irrecoverable behavior of materials,
such as metal, is governed mostly by deviatoric stress (or
shear stress) alone, it is reasonable to take the plane
where shear stress is maximized (in 2D condition) and the
averaged plane where shear stress between two principal
stresses is maximized—i.e., octahedral plane (in 3D
condition)—into consideration. On the other hand, the
irrecoverable behavior of geomaterials, such as soil, is
governed by the frictional law between particles—i.e.,
shear-normal stress ratio. Therefore, attention should be
paid to the plane where shear-normal stress ratio is max-
imized, i.e., the mobilized plane (in 2D condition), and
the plane combined by the three planes where the shear-
normal stress ratio between two respective principal
stresses is maximized, i.e., the SMP (in 3D condition). In
this sense, it is natural to formulate constitutive models
using the normal and parallel components of the stress
and strain increments referred to the SMP. As a conse-
quence, the in‰uence of the intermediate principal stress
on induced anisotropy and frictional resistance is in-
troduced by adopting the tij concept.

THREE-DIMENSIONAL MODELING OF OVER
CONSOLIDATED SOIL BASED ON ADVANCED
ELASTOPLASTICITY (STAGE I)

The above-mentioned elastoplastic model based on the
tij concept for normally consolidated soils is extended
here to a model for over consolidated soils, introducing
the subloading surface concept proposed by Hashiguchi
(1980) and revising it. It is assumed that the stress condi-
tion changes from point I to point P in Fig. 15. Since tN1

moves from tN0 to tN1, the plastic change of void ratio
(－De)pNC for a normally consolidated soil is given by:

(－De)pNC＝(eN0－eN)－(－De)e

＝(－De)NC－(－De)e＝(l－k) ln
tN1

tN0
(49)

As shown in Fig. 20, the initial and current void ratios
for over consolidated soils are expressed as e0 and e and
the state variable r which represents the in‰uence of den-
sity is deˆned as r＝eN－e and its initial value is (r0＝eN0

－e0) in the same way as in the one-dimensional advanced
model (stage I) described by Nakai et al. (2011). Then, the
corresponding plastic change in void ratio (－De)p for
over consolidated soils is expressed as:
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Fig. 20. Change of void ratio in an over consolidated soil

Fig. 21. Triaxial compression and extension tests on Fujinomori clay

Fig. 22. Triaxial compression and extension tests on Toyoura sand
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(－De)p＝(－De)p
NC－(r0－r)

＝(l－k) ln
tN1

tN0
－(r0－r) (50)

From this equation, the yield function for over consoli-
dated soils is expressed using F and H deˆned by Eqs. (34)
and (35) in the same form as that in one-dimensional
model.

F＋r＝H＋r0 or f＝F－sH＋r0－r)t＝0 (51)

The consistency condition (df＝0) and the ‰ow rule in
Eq. (36) give

df＝dF－sdH－drt
＝dF－sd(－e)p－drt

＝dF－{(1＋e0) L
&F
&tii

－dr}＝0 (52)

It can be assumed that the positive value of r decreases
and ˆnally becomes zero with the development of plastic
strains in the same way as in the one-dimensional model
(Nakai et al., 2011). The proportionality constant L(À0)
which represents the magnitude of the plastic deforma-
tion has the dimension of stress, because F is a dimen-
sionless function. Then, (&F/&tii) has the dimension of the
inverse of stress. To satisfy these conditions, the follow-
ing evolution rule of r is given using a monotonic increas-
ing function G(r) which satisˆes G(0)＝0:

dr＝－(1＋e0)
G(r)
tN

L (53)

As mentioned in the one-dimensional model (Nakai, et
al., 2011), any increasing function G(r) which satisˆes
G(0)＝0 can be employed. Since variable r may become
negative, in the same way as one-dimensional model, the
function G(r) in the present model is given by the follow-
ing equation so as to be increasing function even if rº0:

G(r)＝sign(r)･ar2 (54)

Substituting Eq. (53) into Eq. (52), the proportionality
constant L is expressed as

L＝
dF

(1＋e0) {
&F
&tii

＋
G(r)
tN }

＝
dF
hp (55)

In the modeling based on the subloading surface concept
(Hashiguchi, 1980), it is assumed that the current stress

point always passes over the yield surface (subloading
surface) whether plastic deformation occurs or not. Also,
the loading condition is given by:









(56)
dep

ij»0 if L＝
dF
hp À0

dep
ij＝0 otherwise

Then, the plastic strain increment is calculated as:

dep
ij＝〈L〉

&F
&tij

＝〈
dF
hp 〉

&F
&tij

(57)

where, the symbol〈 〉denotes the Macaulay bracket,
i.e.,〈A〉＝A if AÀ0; otherwise〈A〉＝0. The present
model in which the evolution rule of r is given by Eqs.
(53) and (54) coincides with the previously proposed sub-
loading tij model (Nakai and Hinokio, 2004).

Figure 21 shows the observed (symbols) and calculated
(curves) results of triaxial compression and extension
tests on remolded Fujinomori clay with diŠerent over
consolidation ratios (OCR＝1, 2, 4 and 8). Here, tests
with OCR＝8 were carried out under p＝98 kPa, and the
other tests were performed under p＝196 kPa. The model
is capable of uniquely describing not only the in‰uence of
over consolidation ratio (density) on the deformation,
dilatancy and strength of clay but also the in‰uence of in-
termediate principal stress on them. Figure 22 shows the
observed (symbols) and calculated (curves) results of con-
stant mean principal tests on dense and loose Toyoura
sand. The model can describe the stress-strain-strength
behavior of sands under triaxial compression and exten-
sion conditions from dense to loose states with a uniˆed
set of material parameters, in the same way as for clays.
The values of the material parameters for Fujinomori
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Table 2. Material parameters for Fujinomori clay and Toyoura sand
in model at stage I

Fujinomori
clay

Toyoura
sand

l 0.104 0.070

Same parameters as
Cam clay model

k 0.010 0.0045
N (eN at p＝98 kPa) 0.83 1.10
RCS＝(s1/s3)CS(comp.) 3.5 3.2

ve 0.2 0.2

b 1.5 2.0
Shape of yield surface
(same as original Cam
clay if b＝1)

a/(l－k) 500 30 In‰uence of density

Fig. 23. Functions G(r) and Q(v) for evolution rule of r

Table 3. Added material parameter for Fujinomori clay in model at
stage II considering bonding eŠect

b/(l－k) 40 In‰uence of bonding
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clay and Toyoura sand are shown in Table 2. In the simu-
lations in the present paper, the elastic strains are evaluat-
ed with Eq. (18) instead of Eq. (38), due to the following
reasons: there is not much diŠerence in the results be-
tween both equations as mentioned before, the elastic
strains are much smaller than the plastic strains, and Eq.
(18) is usually more popular than Eq. (38). The validity of
the present model (subloading tij model) has been con-
ˆrmed by the test results under various stress conditions
including under three diŠerent principal stresses (Nakai
and Hinokio, 2004).

THREE-DIMENSIONAL MODELING OF
STRUCTURED SOIL BASED ON ADVANCED
ELASTOPLASTICITY (STAGE II)

It is assumed that the stress-strain behavior of struc-
tured soil can be described by considering not only the
eŠect of density described above but also the eŠect of
bonding, in the same way as in the one-dimensional
model. When the stress condition moves from point I to
point P in Fig. 15, the change of void ratio for a struc-
tured soil is also expressed as shown in Fig. 20 and Eq.
(50). Then, the yield function is given by Eq. (51), which
means that Eq. (52) holds for structured soils as well. As
described in one-dimensional modeling (Nakai et al.,
2011), the evolution rule of r with the development of
plastic deformation for structured soils can be deter-
mined not only by the state variable r related to density
but also by the state variable v representing the bonding
eŠect with an imaginary increase of density, and the value
of the state variable v has an additional eŠect on the
degradation of r. The evolution rule of r is then given as
follows using not only G(r) but also an increasing func-
tion Q(v), which satisˆes Q(0)＝0:

dr＝－(1＋e0) {
G(r)
tN

＋
Q(v)

tN } L (58)

The evolution rule of v is given as follows using the same
function Q(v), although it is possible to use another
function:

dv＝－(1＋e0)
Q(v)

tN
L (59)

In the present model, the following linear increasing
function Q(v) is adopted:

Q(v)＝bv (60)

The plastic strain increment is then obtained by the ‰ow
rule based on the tij concept in Eq. (57). Substituting Eq.
(58) into Eq. (52), the proportionality constant L is ex-
pressed as

L＝
dF

(1＋e0) {
&F
&tii

＋
G(r)
tN

＋
Q(v)

tN }
＝

dF
hp (61)

As described in the one-dimensional model (Nakai, et al.,
2011), since there is the possibility that the value of r
becomes negative for the soils with bonding, the domain
of the increasing function G(r) is extended to the negative
side. Therefore, a positive value of r has the eŠect of in-
creasing the plastic modulus; and, on the other hand, a
negative value of r has the eŠect of decreasing the plastic
modulus. Figure 23 illustrates the functions G(r) and
Q(v) for the evolution rule of r and v. The elastic com-
ponents and the loading condition are the same as those
for the model at stage I.

Simulations for a structured clay are carried out to
conˆrm the performance of the present model. The
values of the material parameters used in the simulations
are the same as those for Fujinomori clay in Table 2. One
single parameter (b) for the bonding eŠect, which as-
sumed the value b/(l－k)＝40 as shown in Table 3, were
added. The present model coincides with the model de-
scribed in a previous paper (Nakai, 2007), although the
derivation processes of the present model is more logical.
Figure 24 shows the results, arranged in terms of the rela-
tions between void ratio and vertical stress in log scale, of
simulations using the three-dimensional model for
oedometer tests on structured clays which have the same
initial void ratio but have diŠerent initial bonding eŠects.
Here, the solid line with v0＝0.0 represents the result for
the non-structured soil. It is seen that three-dimensional
model can also describe the typical one-dimensional con-
solidation behavior of structured soils in the same way as
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Fig. 24. Simulation of oedometer tests on a clay with same initial void
ratio but diŠerent initial bonding

Fig. 25. Simulation of drained triaxial compression and extension
tests (p＝98 kPa) on a clay with same initial void ratio but diŠerent
initial bonding

Fig. 26. Simulation of undrained triaxial compression and extension
tests on a clay with same initial void ratio but diŠerent initial bond-
ing
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those simulated by the one-dimensional model in the
related paper. Figure 25 shows the results of simulations
of constant mean principal stress tests (p＝98 kPa) on the
same clay under triaxial compression and extension con-
ditions. The initial stiŠness, the peak strength and
dilatancy become larger with the increase of the bonding
eŠect, even if the initial void ratio is the same. Figure 26
shows the results of simulations of undrained triaxial
compression and extension tests (p?0＝98 kPa) on the

same clay. Diagram (a) shows the results of eŠective
stress paths, and diagram (b) shows the results of stress-
strain curves. In these ˆgures, the upper part depicts the
results under triaxial compression condition, and lower
part shows the results under triaxial extension condition.
The straight lines from the origin in diagram (a) represent
the critical state lines (CSL) in the p-q plane. Under un-
drained shear loadings, clays with bonding are stiŠer and
have higher strength than clays without bonding. It is
also seen that over consolidated clays without bonding
(v0＝0.0) show strain hardening with the decrease and
the subsequent increase of mean stress, whereas clays
with bonding (v0＝0.2, 0.4) show not only strain harden-
ing with the decrease and the subsequent increase of mean
stress but also strain softening with the decrease of mean
stress and deviatoric stress under undrained conditions.
These are the typical undrained behaviors of structured
soils.

Figure 27 shows the results of simulations of isotropic
compression and the subsequent undrained shear tests on
a structured clay. Diagram (a) shows the consolidation
curve of a structured clay (initial state: e0＝0.73 (r0＝0.1),
v0＝0.4 at p0＝98 kPa) from stress condition (A). Dia-
grams (b) and (c) show the results of eŠective stress paths
and stress-strain curves in undrained triaxial compression
tests on the clays which are sheared from stress conditions
(A), (B) and (C) in diagram (a). Figure 28 shows the ob-
served results of undrained shear tests on undisturbed
Osaka Pleistocene clay (Ma12) published by Asaoka et al.
(2000b). Here, OC(e) represents the result under initial
conˆning pressure p?0＝98 kPa (over consolidation state),
and NC(e) represents the result under p?0＝490 kPa
(almost the same stress as the overburden pressure in
situ). The authors (Asaoka et al., 2000b; Asaoka, 2005)
also carried out the simulations of structured soils using
the SYS Cam clay model (Asaoka et al., 2000a), in which
the subloading surface concept (to increase the plastic
modulus) and the superloading surface concept (to
decrease the plastic modulus) are introduced in the Cam
clay model. Similarly, as can be seen from Eq. (61) in the
present model, G(r) and Q(v) have the eŠects of increas-
ing the plastic modulus in the cases where r and v are
positive. Only in the case when r becomes negative (the
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Fig. 27. Calculated results of isotropic compression and subsequent
undrained shear tests on a structured clay

Fig. 28. Observed results of undrained shear tests on undisturbed Osa-
ka Pleistocene clay (Ma12) (replotted from data in Asaoka et al.,
2000b)

Fig. 29. Change of void ratio in a soil with changes in r and c
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current void ratio is larger than that on NCL), G(r) has
an eŠect of decreasing the plastic modulus. The model
proposed here simulates well the typical undrained shear
behavior of structured soils under diŠerent conˆning
pressures, such as the diŠerences of stress paths and
stress-strain curves depending on the magnitude of the
conˆning pressure. It also reproduces the rewinding of
stress path after increasing of mean stress and deviatoric
stress and other eŠects.

THREE-DIMENSIONAL MODELING OF SOME
OTHER FEATURES BASED ON ADVANCED
ELASTOPLASTICITY (STAGE III)

General Modeling
Experimental tests have shown that the normal consoli-

dation line (NCL) and the critical state line (CSL) shift on
the e-ln p (or e-ln tN) plane depending on strain rate, tem-
perature, suction (saturation) and other eŠects, as de-
scribed in the related paper (Nakai et al., 2011). To take
these features into consideration in a three-dimensional
model, the e-ln tN1 relation in Fig. 29 is obtained for the
change of the stress condition from point I to point P in
Fig. 15. Here, c, which is a state variable to determines
the position of NCL, is related to the strain rate, temper-
ature, suction (saturation) or other eŠect, as it is in the
one-dimensional model, and c0 is the initial value of c.
The plastic change of void ratio is then expressed as:

(－De)p＝s(eN0－eN)－(－De)et－(r0－r)

＝{(l－k) ln
tN1

tN0
＋(c－c0)}－(r0－r) (62)

Then, the yield function can be written as follows using F
and H:

F＋r＋c＝H＋r0＋c0

or
f＝F－sH＋(r0－r)＋(c0－c)t＝0 (63)

From the consistency condition (df＝0) and the ‰ow rule
in Eq. (36), the following expression can be obtained:

df＝dF－sdH－dr－dct
＝dF－sd(－e)p－dr－dct

＝dF－{(1＋e0) L
&F
&tii

－dr－dc}＝0 (64)

Since dr is related with the proportionality constant L by
Eq. (58), L is expressed as

L＝
dF＋dc

(1＋e0) {
&F
&tkk

＋
G(r)
tN

＋
Q(v)

tN }
＝

dF＋dc
hp (65)

As described in the modeling at stage I and stage II, the
yield surface always passes over the current stress and the
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Fig. 30. Creep characteristics of normally consolidated soils in general
stress conditions

Fig. 31. Position of NCL depending on rate of equivalent void ratio
change
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plastic deformation occurs when LÀ0. Therefore, the
plastic strain increment in the model of stage III is given
by

dep
ij＝〈L〉

&F
&tij

＝〈
dF＋dc

hp 〉
&F
&tij

(66)

The formulation of the present three-dimensional
model was developed in such a way that it coincides with
the subloading tij model developed by Nakai and Hinokio
(2004) and Nakai (2007). Although the validation of the
model under isotropic compression (or one-dimensional
compression) is the similar to that of the one-dimensional
model described in the related paper (Nakai et al., 2011),
there are some small quantitative diŠerences between the
results of simulations using both models. Another formu-
lation of three-dimensional model in which the results of
simulations coincide perfectly with those of the one-
dimensional model under isotropic compression on over
consolidated soils and structured soils is presented in
APPENDIX II.

Application of Model to Time-dependent Behavior
In the one-dimensional time-dependent model, the

state variable c is related to the rate of the plastic void ra-
tio change (－ ·e)p as described in the related paper (Nakai
et al., 2011). However, in the multi-dimensional stress
condition, (－ ·e)p (or the plastic volumetric strain rate ·ep

v)
is not necessarily positive during plastic deformation be-
cause of soil dilatancy, and then the rate of plastic void
ratio change (or plastic volumetric strain rate) is not suit-
able for measuring time-dependent behavior. Since the
norm of the plastic strain rate ¿ ·ep

ij¿ is always positive dur-
ing plastic deformation even in multi-dimensional condi-
tions and gives the magnitude of the plastic strain rate, it
seems logical to relate c with some quantity using the
norm of the plastic strain rate. Leroueil and Marques
(1996) shows, from experimental results of oedometer
tests and undrained and drained shear tests on a clay, that
the time-dependent behavior of clays under consolidation
and shear can be arranged uniquely using the norm of the
strain rate as the strain rate measure. Besides, it is known
that the void ratio change for normally consolidated soils
subjected to pure creep conditions under isotropic com-
pression satisˆes a linear e-ln t relation with the slope of
la (the coe‹cient of secondary consolidation) in the same
way as that in one-dimensional model. Now, under
isotropic compression, the norm of plastic strain rate ¿ ·ep

ij¿
is expressed as follows using the rate of plastic void ratio
change (－ ·e)p:

¿ ·ep
ij¿＝ ·ep

ij ·e
p
ij＝ ·ep2

1 ＋ ·ep2
2 ＋ ·ep2

3 ＝ 3 ·ep
1

＝
·ep
v

3
＝

(－ ·e)p

3 (1＋e0)
(67)

Although the state variable c and its initial value c0 in
one-dimensional model are related with t and t0 or (－ ·e)p

and (－ ·e)p
0, as described in the related paper (Nakai et al.,

2011), c and c0 in three-dimensional model are given by
the same formula as that in the one-dimensional model
using (－ ·e)p(equ) instead of (－ ·e)p.

Øc＝la ln t
c0＝la ln t0

or Øc＝－la ln (－ ·e)p
(equ)

c0＝－λα ln (－ ·e)p(equ)0
(68)

Here, it is assumed that (－ ·e)p
(equ) is an equivalent rate of

plastic void ratio change, which is deˆned by Eq. (67) not
only under isotropic compression but also under any
other stress condition.

(－ ·e)p
(equ)＝ 3 (1＋e0) ¿ ·ep

ij¿ (69)

This formulation means that for a normally consolidated
soil under pure creep condition there is a linear relation
between e(equ) and ln t with a slope of la, regardless of the
stress condition, as shown in Fig. 30. Therefore, the in-
crement of c is expressed as:

dc＝
&c
&t

dt＝la
1
t

dt＝(－ ·e)p
(equ)dt (70)

The position of the NCL shifts depending on the equiva-
lent rate of plastic void ratio change deˆned by Eq. (69),
as shown in Fig. 31.

Substituting Eq. (70) into Eq. (65), the proportionality
constant L for the model considering time-dependent be-
havior can be obtained:

L＝
dF＋(－ ·e)p

(equ)dt

(1＋e0) {
&F
&tkk

＋
G(r)
tN

＋
Q(v)

tN }
＝

dF＋(－ ·e)p(equ)dt
hp ¥

dF＋(－ ·e)p*
(equ)dt

hp (71)
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Table 4. Added material parameter for Fujinomori clay in time-
dependent model

la 0.003 Coe‹cient of secondary consolidation

(－ ·e)p(equ)ref 1×10－7/min Equivalent rate of plastic void ratio
change at reference state

Fig. 32. Simulation of undrained triaxial compression and extension
tests on a normally consolidated clay with diŠerent strain rates

Fig. 33. Simulation of undrained creep tests after constant strain rate
( ·ea＝2.0%/min) triaxial compression tests on a normally consoli-
dated clay
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Here, (－ ·e)p*
(equ) denotes the equivalent rate of plastic void

ratio change at the calculation step immediately before
the current one, in the same way as in the one-dimen-
sional model. Also, the position of the NCL (c) for the
next calculation step can be determined by Eq. (68) using
the updated value of (－ ·e)p(equ).

Simulation of Time-dependent Behavior of Soil in Three-
dimensional Conditions

The validity of the proposed time-dependent model is
checked by performing some simulations of constant
strain rate tests, creep tests and others on normally con-
solidated clay, over consolidated clay and structured
clay. The material parameters used in the simulation are
the same as those of Fujinomori clay in Table 2. The
parameter b for the bonding eŠect is the same as that in
Table 3. The values of the added material parameters for
describing time-dependent behavior are shown in Table
4—i.e., the coe‹cient of secondary consolidation la and
the equivalent rate of plastic void ratio change at the
reference state (－ ·e)p

(equ)ref. In the following simulations,
the initial equivalent rate of plastic void ratio change is
assumed to be the same as that at the reference state
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Fig. 34. Simulation of undrained triaxial compression tests on nor-
mally consolidated and over consolidated clays with diŠerent strain
rates

Fig. 35. Observed results of undrained triaxial compression tests on
normally consolidated and over consolidated Fukakusa clays with
diŠerent strain rates (replotted from data in Oka et al., 2003)
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(－ ·e)p
(equ)0＝(－ ·e)p(equ)ref.

Figure 32 shows the calculated results ((a) eŠective
stress paths, (b) stress-strain curves) of undrained triaxial
compression and extension tests with diŠerent axial strain
rates ·ea on a normally consolidated clay (r0＝0.0, v0＝
0.0). Here, the curves named `no creep' represent the
results without time-eŠect, and the thick curves indicate
the results of the tests in which the strain rate changes
from 2.0z/min to 0.002z/min and then 2.0z/min dur-
ing shear. The model can describe well-known rate eŠects
on the strength and the development of pore water pres-
sure—higher undrained shear strength and less pore pres-
sure development with increasing strain rates. It is also
seen that the calculated stress-strain state shifts between
the corresponding stress-strain curves and eŠective stress
paths when the strain rate changes during shear, a
phenomenon known as `isotache'.

Figure 33 shows the calculated results of undrained
creep on a normally consolidated clay under triaxial com-
pression condition. The clay is sheared up to a certain
deviatoric stress condition with the strain rate of ·ea＝
2.0z/min, and then the deviatoric stress is kept con-
stant. Diagram (a) shows the stress paths during shear
and creep condition, diagram (b) shows the creep curves
during creep, and diagram (c) presents the relation be-
tween strain rate and elapsed time during creep. It can be
seen that the model represents the typical undrained creep

behavior including transient creep, stationary creep and
accelerating creep (e.g., Sekiguchi, 1984).

Figure 34 shows the calculated results ((a) the eŠective
stress paths, (b) the stress-strain curves) of undrained
compression tests under diŠerent strain rates on the nor-
mally and over consolidated clays with the same initial
void ratio (e0＝0.83) and the same initial equivalent rate
of void ratio change ((－ ·e)p

(equ)0＝1×10－7/min). In these
ˆgures, the results of the normally consolidated clay (p0

＝98 kPa) are the same as those under triaxial compres-
sion tests in Fig. 32. It can be seen that although the mean
stress p in the fast test is smaller than that of the slow test
at the same deviatoric stress q for the normally consoli-
dated clay with negative dilatancy, the tendency for the
over consolidated clay with positive dilatancy is the oppo-
site. Figure 35 shows the observed results of undrained
triaxial compression tests on remolded Fukakusa clay in
normally consolidated states (N-1, N-3) and over consoli-
dated states (O-1, O-2) with diŠerent axial strain rates
(Oka et al., 2003). The initial void ratios of these samples
vary from 1.16 to 1.18. The diŠerences of the strain rate
eŠect on the soil behavior between the normally consoli-
dated clays and the over consolidated clays derived from
the present model simulations correspond qualitatively
with the observed test results in Fig. 35. Asaoka et al.
(1997) also performed undrained triaxial compression
tests on a remolded over consolidated clay with diŠerent
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Fig. 36. Simulation of undrained triaxial compression tests on a struc-
tured clay with diŠerent initial conditions and diŠerent strain rates
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strain rates and reproduced the same strain rate eŠects on
over consolidated clays, by performing a soil-water cou-
pled analysis using their elastoplastic model.

Simulations of undrained triaxial compression tests on
a structured clay with diŠerent strain rates are shown in
Fig. 36. Here, the structured clay is sheared under un-
drained condition with diŠerent strain rates from the con-
ditions (A) and (C) in Fig. 27(a). Diagram (a) shows the
eŠective stress paths and diagram (b) shows the stress-
strain curves. As mentioned when commenting Fig. 32,
the curves represented by `no creep' are the results
without time-eŠect, and the thick curves indicate the
results of the tests in which the strain rate changes from
2.0z/min to 0.002z/min and then 2.0z/min during
shear. The phenomenon of `isotache' has been observed
experimentally in structured soils as well as in non-struc-
tured soils (e.g., Graham et al., 1983). It can be seen that
the present model describes such time-dependent behav-
ior of structured soils as well.

CONCLUSIONS

After interpreting the simple and uniˆed
method—named tij concept—to extend one-dimensional
models (or conventional models, such as the Cam clay
model which uses the stress invariants p and q) to three-
dimensional models capable of taking the in‰uence of the
intermediate principal stress on soil deformation and

strength into consideration, the one-dimensional models
presented in the related paper (Nakai et al., 2011) were
extended to three-dimensional ones using the tij concept.
The main results of this paper are summarized as follows:
(1) The framework of ordinary three-dimensional

elastoplastic models for soils such as the Cam clay
model using the stress invariants p and q was shown.
It was clariˆed on the basis of experimental results
that such models can not consider the in‰uence of the
intermediate principal stress on the deformation and
strength of soils properly.

(2) The concept of tij by which the in‰uence of the inter-
mediate principal stress can be automatically taken
into account in three-dimensional modeling was de-
scribed in details, and its physical meaning was dis-
cussed. A general method to extend any one-dimen-
sional model to three-dimensional conditions using
the tij concept was presented.

(3) The one-dimensional model for over consolidated
soils based on the modeling at stage I described in the
related paper was extended to three-dimensional con-
ditions. This model, which is formulated using the
state variable r to consider the density in the same
way as in the one-dimensional model, coincides with
the subloading tij model proposed before. It was
shown that the present model can describe the stress-
strain behavior of soils including positive and nega-
tive dilatancy under diŠerent void ratio in general
stress conditions using the same material parameters
used in the one-dimensional model.

(4) The one-dimensional model for structured soils de-
scribed in the related paper was extended to three-
dimensional conditions. To describe the behavior of
structured soils, not only the state variable r but also
another state variable v was introduced (modeling at
stage II). This model can describe well-known
drained and undrained shear behavior of structured
soils subjected to three-dimensional stresses as well as
the consolidation behavior, adding only one extra
material parameter.

(5) For describing other features of soils in three-dimen-
sional stress conditions, the one-dimensional model
was also extended to a three-dimensional one, by in-
troducing the other state variable c (modeling at
stage III). The three-dimensional time-dependent
model for non-structured and structured soils with
various densities was formulated using this state vari-
able, in the same way as in the one-dimensional
model. This model can describe various time depend-
ent behaviors of normally consolidated soils, over
consolidated soils and structured soils, such as strain
rate eŠect on shear behavior, creep behavior and
others. The added material parameter for considering
time-dependent behavior is the coe‹cient of sec-
ondary consolidation alone.

A simple and uniˆed method to describe various soil
features such as the in‰uences of density, bonding eŠect
and time-dependent behavior were presented using three
state variable (r, v and c). Besides these features, it may
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be possible to describe temperature-dependent behavior,
the behavior of unsaturated soil, and the in‰uence of par-
ticle crushing as well using these three state variables and
determining their evolution rules. Furthermore, the tij
concept, which is used for extending one-dimensional
models to general three-dimensional ones, may be uti-
lized to take into consideration the stress induced
anisotropy as well.
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NOTATION

a: material parameter to describe the in-
‰uence of density and/or conˆning pres-
sure

a1, a2 and a3: principal values of aij—i.e., direction co-
sines of normal to the spatially mobilized
plane (SMP)

aij: symmetric tensor whose principal value
are given by a1, a2 and a3

b: material parameter to describe the in-
‰uence of bonding

de*N: strain increment invariant in tij concept—
i.e., normal component of deij with respect
to the SMP

de*S: strain increment invariant in tij concept—
i.e., parallel component of deij with
respect to the SMP

e: void ratio
eN: void ratio on the normally consolidation

line (NCL)
f＝0: yield function

hp: plastic modulus
k: coe‹cient of permeability
p: stress invariant used in ordinary models—

i.e., mean principal stress
p1: value of p on p-axis for the current yield

surface
q: stress invariant used in ordinary models—

i.e., deviatoric stress
t: time

t1, t2 and t3: principal value of tij

tij: modiˆed stress tensor based on the tij con-
cept (＝aikskj)

tN: stress invariant in tij concept—i.e., normal
component of tij with respect to the SMP

tN1: value of tN on tN-axis for the current yield
surface

tS: stress invariant in the tij concept—i.e.,
parallel component of tij with respect to
the SMP

Ee: tangential Young's modulus of the elastic
component

F: stress term in the yield function
(＝(l－k) ln (p1/p0) or (l－k) ln (tN1/tN0))

G(r): increasing function of r which satisˆes
G(0)＝0

H: plastic strain term in yield function
(＝(－De)p＝(1＋e0)ep

v)
I1, I2, and I3: ˆrst, second and third invariants of sij

Ir1, Ir2 and Ir3: ˆrst, second and third invariants of rij

(where rikrkj＝sij)
N: void ratio at the NCL for p＝98 kPa (at

(－ ·e)p＝(－ ·e)p
ref in case of time-dependent

model)
Q(v): increasing function of v which satisˆes

Q(0)＝0
RCS: principal stress ratio at critical state in

triaxial compression (＝(s1/s3)CS(comp))
X: stress ratio (＝tS/tN)
Y: plastic strain increment ratio (＝deN*p/

deS*p)
b: material parameter to determine the shape

of the yield surface
dij: unit tensor

qmoij: mobilized angle between two principal
stresses (si and sj)

e1, e2 and e3: principal strains
eij: strain tensor
ed: deviatoric strain
ev: volumetric strain
h: stress ratio (＝q/p)

f1 and f2: principal values of the fabric tensor
k: swelling index
l: compression index

lk: coe‹cient for considering in‰uence of
void ratio on permeability

la: coe‹cient of secondary consolidation
ne: Poisson's ratio of elastic component
r: state variable representing den-

sity–diŠerence between the current void
ratio and the void ratio on the NCL at the
same stress level

s1, s2 and s3: principal stresses
sij: stress tensor
s*ij: modiˆed stress tensor deˆned by Satake
v: state variable considering the bonding

eŠect as an imaginary increase of density
c: state variable for shifting the NCL on the

e–ln tN1 plane
z(h), z(X ): increasing function of the stress ratio (h or

X ) which satisˆes z(0)＝0—i.e., function
to determine the shape of yield surface

L: proportionality constant (＝dF/hp or
(dF＋dc)/hp)

M: stress ratio h at the critical state
M*: intercept with X axis in stress-dilatancy re-

lation based on the tij concept–determined
from XCS and YCS

superscript e: elastic component
superscript p: plastic component
subscript 0: initial value
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subscript ref: value at reference state
subscript (equ): equivalent value
subscript CS: value at critical state
subscript NC: value at normally consolidated state
overhead dot (･): rate of quantities
preˆx d: inˆnitesimal increment of quantities
preˆx D: ˆnite change in quantities
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APPENDIX I: PARTIAL DERRIVATIVES OF
STRESS FUNCTION F AND STRESS VARIABLES

The stress term F in the models based on the tij-concept
is expressed by the following form as a function of the
mean stress tN and the stress ratio X:

F＝(l－k) {ln
tN

tN0
＋z(X )} (A1; 34bis)

and the deˆnitions of tensors and scalars related to the tij-
concept are shown in Table 1.

Firstly, the derivatives of F with respect to modiˆed
stress tij are shown.

&F
&tij

＝
&F
&tN

&tN

&tij
＋

&F
&X

&X
&tij

(A2)

&F
&tN

＝(l－k)
1
tN

(A3)

&tN

&tij
＝

&(tklakl)
&tij

＝aij (A4)

&F
&X

＝(l－k)z?(X ) (A5)

&X
&tij

＝
&( xklxkl)

&xmn

&xmn

&tij
＝

1
X・tN

(xij－X2aij) (A6)

As described in previous papers (e.g., Nakai and Mi-
hara, 1984; Nakai, 1989), the mean stress tN and the stress
ratio X are also given using the ordinary stress sij as tN＝
3I3/I2, X＝ I1I2/9I3－1. Then, the derivative of F with
respect to the ordinary stress sij is expressed as follows:

&F
&sij

＝
&F
&tN

&tN

&sij
＋

&F
&X

&X
&sij

(A7)

&tN

&sij
＝

&
&sij

Ø3 I3

I2
» (A8)
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Fig. A1. Comparison of calculated stress-strain curves using L from
Eq. (65) and L from Eq. (A17)
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&X
&sij

＝
&

&sij
Ø I1I2

9I3
－1» (A9)

where, I1, I2 and I3 are the ˆrst, second and third invari-
ants of sij, as shown in Eq. (25).

APPENDIX II: ANOTHER THREE-DIMENSIONAL
FORMULATION

The yield function f＝0 and the consistency condition
df＝0 are given by:

f＝F－sH＋(r0－r)＋(c0－c)t＝0 (A10; 63 bis)

F＝(l－k) ln
tN1

tN0
＝(l－k) {ln

tN

tN0
＋w(X )} (A11; 34 bis)

H＝(－De)p＝(1＋e0)・ep
v (A12; 35 bis)

df＝dF－sdH－dr－dct
＝dF－sd(－e)p－dr－dct

＝dF－{(1＋e0) L
&F
&tii

－dr－dc}＝0 (A13; 64 bis)

Now, in the one-dimensional model (Nakai et al., 2011),
dr is expressed as

dr＝－sG(r)＋Q(v)t・d(－e)p (A14)

Under isotropic compression (dep
1＝dep

2＝dep
3), there is the

following relation between d(－e)p and L:

d(－e)p＝(1＋e0)dep
v＝ 3 (1＋e0) ¿dep

ij¿

＝ 3 (1＋e0) L¿&F
&tij¿ (A15)

Assuming that the evolution rule of r in general stress
conditions is given by replacing d(－e)p in Eq. (A14) with

3 (1＋e0) L ¿&F/&tij¿, Eq. (A13) can be rewritten as:

df＝dF－(1＋e0)
&F
&tkk

L－{ 3 (1＋e0) ¿&F
&tij¿}G(r)L

－{ 3 (1＋e0) ¿&F
&tij¿}Q(v)L＋dc＝0 (A16)

Then, the proportional constant L is given by

L＝
dF＋dc

(1＋e0) {
&F
&tkk

＋ 3 ¿&F
&tij¿G(r)＋ 3 ¿&F

&tij¿Q(v)}
＝

dF＋dc
hp (A17)

Figure A1 shows the comparison of the calculated
results (black curves) in Figs. 21(a) and 25(a) using L
from Eq. (65) with the corresponding results (gray
curves) using L from Eq. (A17). Here, diagram (a) shows
the results for diŠerent initial density (OCR) without
bonding (v0＝0), and diagram (b) shows the results for
diŠerent initial bonding (v0) under the same initial den-
sity (r0＝0.1). Although the form of the equations for
G(r) and Q(v) in Eq. (A17) are the same as Eqs. (54) and
(60), the values of material parameters a and b in Eq.
(A17) are a＝90 and b＝7. It can be seen that there is not
much diŠerence in the calculated results either using Eq.
(65) or Eq. (A17).


