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A SIMPLE ELASTOPLASTIC MODEL FOR NORMALLY AND OVER CONSOLIDATED
SOILS WITH UNIFIED MATERIAL PARAMETERS

Teruo Nakal) and Masaya HiNok1oH

ABSTRACT

An isotropic hardening elastoplastic model for soil, which can describe typical deformation and strength behavior of
normally and over-consolidated soils in general stress conditions, is presented. This model can take into consideration
the influence of density and/or confining pressure on the deformation and strength characteristics of soils. Further, it
also takes into account the influence of intermediate principal stress on the deformation and strength of soil and the
stress path dependency on the plastic flow, as did other previous versions of this model. For considering the intermedi-
ate principal stress on the deformation and strength, the concept of modified stress #; is employed in the same way as
the previous models. With respect to the subloading surface concept, the previous models are revised and extended into
one in which the influence of density and/or confining pressure on the deformation and strength of soil can be
considered. Furthermore, the influence of stress path dependency of the direction of plastic flow is considered by
dividing the plastic strain increment into two components - i.e., a component satisfying associated flow rule and a
component of isotropic compression. In the present model, only one material parameter a for representing the
influence of density and/or confining pressure is added to the parameters of the previous model, which are fundamen-
tally the same as those of the Cam clay model. The validity of the present model is checked by monotonic and cyclic
loading tests not only on normally and over-consolidated clay but also on loose and dense sands in three-dimensional
stresses.

Key words: clay, (confining pressure), constitutive equation of soil, deformation, density, (intermediate principal
stress), plasticity, sand, strength, (stress path dependency) (IGC: D6)

the deformation and strength
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For appropriate prediction of the deformation and  (viii) Time effect and age effect

failure of soil, we have to carry out numerical analysis ~Although many models have been proposed since the
using a simple and generalized constitutive model for ~Cam clay model, most of them are much more complex
soils. The Cam clay model, which was developed at than the Cam clay model, and their applicability to prac-
Cambridge University (e.g., Schofield and Wroth, 1968),  tical problems is still limited. We also have developed
was the first elastoplastic model applicable to the practi- simple constitutive models for clay and sand - named #;-
cal deformation analysis of ground. This model is clay model (Nakai and Matsuoka, 1986) and f;-sand
certainly very simple, i.e., the number of material model (Nakai, 1989) - and applied them to the analysis of
parameters is few, and the meaning of each parameter is  practical geotechnical problems. In these models, the in-
clear. However, the Cam clay model encounters fluence of intermediate principal stress on the deforma-
problems for description of soil behavior in the following  tion and strength of soil and the stress path dependency

points: of plastic flow are particularly taken into consideration.
(i) Influence of intermediate principal stress on the However, the #;-clay model is applicable to normally con-

deformation and strength of soil solidated clays but cannot describe the elastoplastic be-
(i) Stress path dependency on the direction of plastic  havior of over consolidated clays with positive dilatancy,

flow and some material parameters of the f;-sand model de-
(iii) Positive dilatancy during strain hardening pend on the density and/or confining pressure even for
(iv) Soil anisotropy and non-coaxiality the same sand. On the other hand, even when the clayey
(v) Behavior of soil under cyclic loading ground is initially normally consolidated, the ground

(vi) Influence of density and/or confining pressure on  condition can change to over-consolidated during loading
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and unloading processes. The void ratio of sandy ground
also can change during deformation. Then, in order to
predict the ground movements and its failure behavior
precisely, it is necessary that the model used in the analy-
sis be capable of describing the deformation and strength
accurately under a wide range of soil density and/or con-
fining pressure with unified material parameters.

In the present study, the above models for clay and
sand are extended to a simple model that can take into
account the influence of the density and/or confining
pressure on the deformation and strength of soil, as well
as the influence of intermediate principal stress on the
deformation and strength and the influence of the stress
path on the plastic flow. After describing the concept of #;
and the outline of the Cam clay model, we will show the
formulation of the present model and its validation by
experimental results.

EXPLANATION OF Ty;-CONCEPT AND OUTLINE
OF CAM CLAY MODEL

Concept of t;

In most isotropic hardening models such as the Cam
clay model, yield functions are formulated using stress
parameters (mean stress p and deviator stress g) and
assuming flow rule in ordinary stress space g;;. However,
such models cannot describe stress-strain behavior and
strength in three-dimensional stresses in a uniform
manner. Figure 1 shows the results of drained triaxial
compression and extension tests on Fujinomori clay un-
der constant mean principal stress, in terms of the rela-
tion between stress ratio (g/p), deviatoric strain (4) and
volumetric strain (g,). It can be seen from this figure that
the deformation and strength characteristics of soils
cannot be explained adequately using these stress and
strain parameters. Nakai and Mihara (1984), then,
proposed a method, which has been called the #;-concept,
to take into account adequately the influence of inter-
mediate principal stress on soil behavior, by introducing
the modified stress tensor #; and assuming the flow rule in
a modified stress space. The stress and strain increment
tensors and their parameters using the ordinary concept
and #;-concept are compared in Table 1. As shown in
Fig. 2, the stress tensors and parameters in the ordinary

models are defined as the quantities related to normal and
parallel components of g to the octahedral plane. On the
other hand, as shown in Fig. 3, the stress tensors and
stress parameters of the #;-concept are those of normal
and parallel components of the modified stress #; to the
spatially mobilized plane (briefly SMP; Matsuoka and
Nakai, 1974). Here, a; is the symmetric tensor whose
principal values are determined by the direction cosines
(a1, a» and a3) of the normal to the SMP. The tensor aij
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Fig. 1. Test results of triaxial compression and extension tests
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Fig. 2. Illustration of stress quantities in o;-space which are used in
the ordinary concept

Table 1. Comparison of tensors and scalars related to stress and strain increment between ordinary concept and f-concept

Ordinary concept

#; concept

Tensor normal to reference plane

d; (unit tensor)

a; (tensor normal to SMP)

Stress tensor g 4= a0y

Mean stress P=0;0;/3 In=t;a;
Deviatoric stress tensor $; =0y — Py L=t~ tyay
Deviatoric stress q=+/(3/2)s;s; ts=y/t;1

Stress ratio tensor mi=s;/p X =1/ 1y

Stress ratio n=q/p=4/G2)mn; X=ts/tn=o/x5%;
Strain increment normal to reference plane de, = de;o;; degup= de;; a;;
Deviatoric strain increment tensor de=de;;— de,d;/3 dej=de; — degyp a;;

Strain increment parallel to reference plane

deq=./(2/3)de;de;

dysur = Jdejde;
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Fig. 3. [Tllustration of stress quantities in £;-space which are used in the
t; concept

and its principal values are expressed as follows using a;;
(Nakai, 1989): '

I I
aij=/\/;2'ri;l:ﬁ'(Gik+1r26ik)(lrlakj+Ir36kj)_1 (1)
I

3

a=

=/ Lo, (i=1,2,3) @

where o; (i=1, 2, 3) are the three principal stresses, 1, I,
and I; are the first, second and third invariants of gy, and
Iy, I, and I, are the first, second and third invariants of
r;, which is the stress tensor to the one-half power, such
that ryr;=0;. These invariants are expressed using
principal stresses and stress tensors as

Li=01to,to;=0i
1 2
12=O'10'2+O'20'3+0'30'1:i{(Uii) — 03051} 3)

I,=0,0,03=¢jx0101203

L=.0,+\o,t,o3=r;

1
Ir2=/\/0'10'2+4/0'20'3+ 0'30'1':5{(rii)2_rijrji} 4)
Iy=.,/010203=eurulipha

where ey is the permutation symbol. As can be seen from
the above equation, g; is a function of the stress ratio and
its principal axes coincide with those of &;; (the methods
to calculate a; in plane strain, axisymmetric and general
3D conditions are shown in Appendix I). The modified
stress tensor is then defined by the product of ai and oy
as follows:

lij = Qi Oy )

The principal axes of #; coincide with those of g, because
the principal axes of a; and oy are identical.

In the isotropic hardening model based on the f;-
concept, we formulated the yield function using the stress
parameters (¢v and fs) instead of (p and gq) and assumed
the flow rule not in o;; space but in #; space. The validity
of this concept was confirmed by the test results on clay

def )
(de’) &
q
(dgvp sdgdp)
M
1
P P (def)
Fig. 4. Yield surface of Cam clay model on p-g plane

(Nakai and Mastuoka, 1986; Nakai, et al., 1986) and
sand (Nakai, 1989) in general stress conditions.

Brief Description of Cam Clay Model

The yield function of the Cam clay model (e.g.,
Schofield and Wroth, 1968), which is the same as the
plastic potential function, is represented in Fig. 4, and it
is given by a function of mean principal stress p and stress
ratio 7.

f=1np+A%—lnp1=0 (6)

Here, M is the stress ratio at critical state #cs and is
represented by using the principal stress ratio at critical

state in triaxial compression Rcs= (01/G3)cscomp,) aS
3(Res— 1)
=" ™)
Res+2

In Eq. (6), p; is related to the strain hardening parameter
(plastic volumetric strain &%) as follows:

g2=C,In2" (Cp=/1 K) ®)

Do 1+e
where p, is the value of the initial yield surface at p-axis,
and p, is that of the current yield surface. The symbols e,
4 and x denote void ratio, compression index and
swelling index, respectively, and e, is the void ratio at
reference state. The flow rule and the proportionality

‘constant are represented as

af

d i.:A— 9
] 30, )
of af
df 67 gijj 50_— dO’ij
A="T= = — (10)
h? h? 1 af
Cp 00Kk
The loading condition is expressed as follows:
def#0 if f=0and dfgzif“do-ij>0
a0;; 11
def=0 else

Now, the coaxiality between stresses and plastic strain
increments and normality condition give the following
equation between the stress parameters and the plastic
strain increment parameters:
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Fig. 5. Stress ratio-plastic strain increment ratio relation of Cam clay
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Fig. 6. Yield surface of proposed model on 7y-f; plane

p-deb+q-deh=0 (12)

Then, the plastic strain increments whose direction is
normal to the yield function in Eq. (6) satisfy the
following stress ratio-plastic strain increment ratio
relation (see Fig. 5):

(13)

FORMULATION OF SUBLOADING 7;,; MODEL

Model Satisfying Associated Flow Rule in t; Space
Usually, the yield function of soil is presented as a
logarithmic function of the mean stress plus an increasing

function of stress ratio. Using the stress parameters of.

ti-concept in Table 1, we give the yield function in the
following form:

f=ln z‘N+g(X)—ln Nt

t t
=In—+¢(X)—In =0 (14)
Ino Ino
(X)—l X ’ (8: material parameter) (15)
c B \M* : al parameter

Here, fy and X'=(s/ty are the mean stress and the stress
ratio based on the #;-concept, and #y; determines the size
of the yield surface (the value of #y at X=0). Figure 6
shows a two-dimensional representation of the yield
surface on the &y — s plane. The value of M* in Eq. (15)is
expressed as follows using principal stress ratio Xes=
(ts/tn)cs and plastic strain increment ratio Yes=(desup/
dy&Rw)cs at critical state:

r¥es
-Y(=-degyiddysiz)

Fig. 7. Stress ratio-plastic strain increment ratio relation of the
proposed model

M* = (Xts+ XE ' Yeo)'/# (16)

and these ratios Xcs and Ycs are represented by the
principal stress ratio at critical state in triaxial compres-
sion Rcs (see Appendix II for the detailed derivation proc-
ess of Egs. (16), (17) and (18)):

EY

Y= (VR (7)
__ 1-Res

T AR+ 0.5) (9

From the normality condition, the following relation
holds between the stress parameters and the plastic strain
increment parameters based on the f;-concept.

tN'd8;R1P+tS'dy;}I]\4P:O (19)

Here, the directions of degdp and dydue coincide with
those of #v and s, respectively, because coaxialty between
stress and plastic strain increment are assumed. The stress
ratio-plastic strain increment ratio relation in the follow-
ing equation (see Fig. 7) is obtained from Egs. (14), (15)
and (19).

My~ X
— X

The difference of shape of the yield surfaces between the
present model and the previous models (Nakai and
Matsuoka, 1986; Nakai, 1989), and the merits of the
present model are described by Chowdhury and Nakai
(1998). In the previous models, we assumed a liner
relation between the stress ratio and plastic strain incre-
ment ratio so that their yield surfaces have singular points
at the origin and #y-axis. In contrast, the present model
has no singular point on the yield surface. The plastic
strain increment can be calculated by assuming the
associated flow rule in #; space.
def; =Aa—f

at;;

Y (20)

@1

Here, A is the proportionality constant which represents
the magnitude of the plastic strain increment in the same
way as in ordinary elastoplastic models.

Now, for the previous model for normally consoli-
dated clay (#;-clay model), ty; in Eq. (14) is linked with
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Fig. 8. Test results of triaxial compression tests on normally
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consolidated clay (OCR=1) under constant mean principal stress
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Fig. 9. Test results of triaxial compression tests on over-consolidated clay (OCR =2) under constant mean principal stress

the plastic volumetric strain &% as indicated by Eq. (8) in
the same manner as in the Cam clay model.

PR S et
el=CyIn . <Cp 1+eo) (22)
This equation is obtained from the condition that the
plastic volumetric strain (or void ratio) of normally
consolidated clay at elastoplastic region is determined by
the present stress state alone and is independent of the
stress path history (Henkel, 1960), and the mean stress #y
based on #;-concept coincides with the ordinary mean
principal stress p at isotropic stress condition (X=0).
Here, ¢, is the void ratio at reference state (X=0 and
p=1In=tw). Then, from Egs. (14), (21) and (22) and
compatibility condition (df=0), we obtain the following
equation:

gL e
df= a0, do; c, deb
af 1 af
~ X do——aTL <o 23
80';5 i Cp 0t ( )

Then, the proportionality constant A is expressed as
follows in the same way as the previous model (Nakai and
Matsuoka, 1986):

LI of do,

% _ 30'1]' _ aO'jj
W 1 of
C;, 0t

where, denominator A° is the plastic modulus that
represents the stiffness of plastic components.

On the other hand, an over-consolidated clay does not
satisfy Eq. (22), and its stiffness is larger (#° of over-
consolidated clays is larger than that in Eq. (24)). Figures
8 to 10 show (a) observed relations between stress ratio
q/p, deviatoric strain &; and volumetric strain &, of triaxi-
al compression tests on Fujinomori clay under various
over-consolidation ratios (OCR =1, 2 and 4) and various
mean principal stresses, and (b) schematic changes of
void ratio in these tests on e-lnp plane. Here, the straight
lines NCL and CSL in diagram (b) are the normally
consolidation line (X=0) and critical state line (X = Xcs).
We can see from these figures that the stiffness of stress
ratio against strains increases with an increase of the over-
consolidation ratio but is independent of mean stresses.
Taking into consideration the above test results and
referring to the subloading surface concept proposed by
Hashiguchi and Ueno (1977) and Hashiguchi (1980), we
will extend the previous model to one applicable to not

A= 24)
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Fig. 10. Test results of triaxial compression tests on over-consolidated clay (OCR =4) under constant mean principal stress

Fig. 11. Shape of yield surface and normal yield surface, and defini-
tion of p

only normally consolidated soils but also to over-consoli-
dated soils. According to the subloading surface concept,
the yield surface (subloading surface) not only has to
expand but also to shrink for the present stress state to lie
always on the surface, and the yield function represented
by Eq. (14) is rewritten as

t t
f=In—+¢(X)~In =
I'no Ino

E—l

t
=In —+¢(X)— (m
tNO 11

n ’N“’> =0 (25)
NO N1

Here, v is the value of ¢y of the yield surface passing
through the present stress state in the same manner as
Fig. 6, and ity is the mean stress #v equivalent to the
present plastic volumetric strain (or void ratio), which is

defined as

INte A—K
C =
INo ( P 1+ e0>

Although #yi. coincides with #y; in normally consolidated
states, fnie is larger than fy; in over-consolidated states.
The ratio #nie/fn1 corresponds to the over-consolidation
ratio in a broad sense. Figure 11(a) shows the yield sur-

e2=C,1n (26)

face (solid curve) passing through the present stress state
P and its similar curve passing through fy;. on #y axis,
which is the yield surface for a normally consolidated soil
with same void ratio (broken curve). In the subloading
concept by Hashiguchi (1980), the solid curve and broken
curve are called subloading surface and normal yield
surface, respectively. Assuming a rational evolution rule
for the size of both curves with plastic strain develop-
ments, Hashiguchi (1980) proposed a method to describe
unconventional plasticity behavior as seen in over-con-
solidated clay. Introducing this concept directly, Asaoka
et al. (1997) extended the Cam clay model to one valid for
over-consolidated clay as well. The previous #;-clay model
was also extended using the subloading concept and
others by Chowdhury et al. (1999). In the present study,
we intend to revise the concept, while preserving the basic
idea of Hashiguchi, to make it more suitable for observed
soil behavior and easier to apply. Now, the points A and
B on the e-Infy diagram in Fig. 11(b) indicate the void
ratios of over-consolidated soil and normally consoli-
dated soil at the same stress state P. The difference of the
void ratios p between A and B can be regarded as an
index of soil density, because the stress ratio-strains
relations of soils with the same p are identical regardless
of mean stress (see Figs. 8 to 10). In a mechanical sense,
void ratio itself is, therefore, not suitable for representing
the soil density. We can see from Fig. 11 that there is the
following relation between p and the ratio #nic/ni.

INie Inte

p=(A-kK)In =(1+e)C,ln

Nt Int

@7

From Eqgs. (25) to (27), we can obtain

In 1 P
=ln—+¢X)—— (&f— 28
f=In g 760 c, (8 1 +e0> (28)

Compatibility condition (df=0) gives

of 1 p
df=—— —— D — R —
f 60;_; dOJ Cp <d8 d (1 +€0>>

(29)
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Here, we assume that the increment of p/(1 +ep), which
represents the change of density during plastic deforma-
tion, is influenced by the present density p and mean
stress ¢n. Then, it can be given by the following equation
using a function L(p, #n).

p = .
d <1+e0) =A-L(p, tn) (30)

Therefore, from Eqgs. (29) and (30), the proportionality
constant A for an over-consolidated soil is expressed as

af of
df, ooy " 30, 4%
A== —= - @1
AP hP 1 /af L, 10
G (atkk i )

Here, L(p, tx) has to be formulated to explain the behav-
ior from a normally consolidated condition to an over-
consolidation state: i.e., (i) whenever plastic deformation
occurs, A is positive; (ii) the over-consolidated state
moves toward the normally consolidated state with de-
velopment of plastic deformation, so that the increment
d(p/(1+ep)) should be negative; (iii) Eq. (31) becomes
Eq. (24) at normally consolidated state (p=0). To satisfy
these conditions, the function L(p, ty) should be negative
at p>0and L(p, tn)=0 at p=0. Now, we will pay atten-
tion to the unique relation between stress ratio and strains
regardless of mean principal stresses in Figs. 8 to 10. The
plastic strain increments for normally consolidated soil
calculated using Eq. (24) satisfy the unique relation in
Fig. 8 in the same way as the Cam clay model. In order to
describe the unique relations (Figs. 9 and 10) in over-
consolidated states as well, the dimension of L(p, f) in
Eq. (31) has to be the same as 9f/dt;. Furthermore, the
stiffness and strength of over-consolidated soils become
large with an increase of density p. Here, the denomina-
tor of A° in Eq. (31) represents the stiffness, and the
relation between density and peak strength is obtained
from the condition of A°=0. Satisfying the above
conditions, we define L(p, t\) as

G
L(p, tn)= &) (32)
In
and Eq. (31) is rewritten as
of af
—— agj; _“‘dO'ij
%_aaij _ ao'ij
R 1 (of G)
C, 0t In
a
a—J; Dijy dew
= p (33)
h°+ of Diinop /
aamn atop

The derivation process of the proportionality constant A
expressed by the strain increment de; and the elastic
modulus tensor Dy, is shown in Appendix III. Here, G(p)
is a monotonically increasing function which satisfies the
condition of G(0)=0. We will give it by the following

equation using one material parameter a.

G(p)=a-p’ (34)

The loading condition of soil through its hardening
process to softening process is presented as follows, in the
same way as Hashiguchi (1980), Asaoka et al. (1994,
1997), Chowdhury et al. (1999) and others:

deb#0 if A=%20

de%=0 if A=dh—J§’<O

or

def#0 if %Dﬁkldsklzo s
de%=0 if %ngldamo .

The plastic strain increment can be finally written as
follows including its loading condition.

o _ <dfa> of

deh=<{A —
! < atij atij

e (36)
Here, the symbol {} denotes the Macaulay bracket, i.e.,
{AY=A if A=0; otherwise {A)>=0.

The elastic strain increment is given by generalized
Hooke’s law

e = 1+v.
ij

dO'ij“& dﬂkkéij (37)

E. E

Young’s modulus E. is expressed in terms of the swelling
index x and Poisson’s ratio v. as

3(1—-2ve)(1 +ep)p

E.= (38)
K
Therefore, the total strain increment is given by
de;=def+ deh; 39

Extension to Model Considering Stress Path Dependency
on the Direction of Plastic Flow

According to usual plasticity, the direction of plastic
flow (direction of plastic strain increments) is independ-
ent of the direction of stress increments. It is, however,
experimentally known that the direction of plastic flow is
influenced by the direction of stress increments except at
and after peak strength. In the previous models for clay
and sand (#;-clay model and #;-sand model), such stress
path dependency was considered by dividing the plastic
strain increment into two components — the plastic strain
increment del“" satisfying the associated flow rule in #;-
space as mentioned above and the isotropic plastic strain
increment de’ under increasing mean stress - in spite of
using just one yield function and one strain hardening
parameter. The same method is employed in the present
modeling to consider the stress path dependency on the
direction of plastic flow. Referring to Eqgs. (21) and (33),
we can express the plastic volumetric strain increment by
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detdptn
ot 1 6_f+G(p) atii
Co \0tue  In

Under isotropic compression condition (X=0), the
following equations hold.

(40)

tNl =1In =p (41)
af 1
—=—4aj 42
ati  In (42
and the plastic volumetric strain increment is expressed as
1 dt
deh=—"—-—% 43)
1 ( G(p)) In
1+
Cp dii

It is assumed that the plastic volumetric isotropic strain
increment de?'® in general stress conditions, which
occurs at diy>0, is fn/t of the plastic volumetric strain
dey given by Eq. (43) in the same way as the ;;-clay model
(Nakai and Matsuoka, 1986).

1 Ldno ix
1 (1 +G(p)> In  Iu
Cp ai;

where, from Eq. (14), the ratio #y/#x; is expressed by the
following equation:

N exp (~ (X)) LX

—=exp(—¢ =exp | —= |—%

i B\M*
The expression for dty is shown in Appendix IV, together
with the derivatives of some functions based on the &;-

concept. Therefore, the plastic strain increment def® is
given by

depto) = (44)

(45)

1
—dn
4__tm " 4
3

31 (1 +G(p))
Cp Ayk
where the symbol {$ denotes the Macaulay bracket as
mentioned before.

When the Cam clay model was formulated, it was
based on Henkel’s (1960) experimental results on normal-
ly consolidated clays, which showed a unique surface in
p-g-e space independent of stress paths. Therefore, we
assume that in the same way as the #;-clay model the
present model satisfies the unique relation between &° and
stresses at normally consolidated state (p=0; G(p)=0),
even though the strain increment consists of the two

components. From Egs. (14), (21), (22) and (46), normal-
ly consolidated soils satisfy the following condition.

RO = ggpio (46)

af 1 1
—d ,__hdgz_ dg(AF)+ g(IC)
on (% Cp € (de ded')
=c (A““’ a{ +G, —(dtN>) 47
p il

From this equation, we can obtain the proportionality
constant of dsp(AF) at normally consolidated state (p=0;

G(p)=0) by the following equation, which is the same as
that in the #;-clay model (Nakai and Matsuoka, 1986).

a 1 1
_dekl"_<dtN> df,——<dt)
d0u N1 Ini
ANAD = = (48)
l af h?
C I
We then define the strain increment de"(AF’ at over-con-

solidated state as well as normally consolidated state in
the following form, referring to Egs. (33) and (48),

af del_—<dtN>
deb®P = gop 2L af 90 I of
a1 (af +G(P)) at;
1 C atmm tN
Ty o
Bl hP at; “49)

Hence, the strain increments, of which the stress path
dependency on plastic flow is considered, are summarized
as follows:

(i) elastic region (A =df,/h® <0):
dsii = dSiej
1 + Ve
E.

dO',] dakkd,»j (50)

(ii) elastoplastic region with strain hardening (A =df,/
#*=0 and A°=0):
dey = de§+ def ™" + del'©
1 1+,
E,

a
f ——doy—— <dtN>
+80k1 I af

_~<_f+G(P)) oty
C atmm tN

— dty
tm< N 5
3

S —
1 (1 + G(ﬂ))
Cp Ayk

(iii) elastoplastic region with strain softening (A =df,/
h*=0 and A <0):

dO'U E dakkéij

6]

de;=def + def;
1 + Ve
E dO'U Ee dO'kkéij

I o
Aoy af

+ — (52)

1 [of 4 G(p)\ 9%

atmm tN

Figure 12 shows the yield surface f and the present
stress state A on the yield surface in #\-#s plane, in which
the direction of plastic strain increment def" is indi-
cated by the arrow. Here, the directions of desir and
dys$e coincide with those of fy and s, respectively. When
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Is

dty#0
1
]

H | d & !/)(A F)
il

A

I

0
tN 1 t N
Fig. 12. Regions in which three kinds of strain increments occur

Table 2. Values of material parameters for Fujinomori clay

CA(1+eq) 5.08x107
C=x/(1+¢g) 1.12x107
N=eyc at p=98kPa 0.83 Same parameters as Cam clay
& g=0kPa T model
RC‘S:(O'I/0'3)(;,5'(1'0111;),l 3.5
Ve 0.2
5 15 S_h;p_e “of _yfeid_ surface -(Ea_m_e_
) as original Cam clay at f=1)
a 500 Influer}ce of density and
confining pressure

/ is negative and the stress state moves to inside the yield
surface (region I), only elastic strain occurs. In the
elastoplastic region with strain hardening where the stress
state moves to region II, the plastic strain increment is
only def“”. On the other hand, if the stress state moves
to region III, the plastic strain increment can be divided
into def“” and def'”. The present formulation allows
continuous development of strain increment between
region II and region III, and the directions of plastic flow
are influenced by the stress path at region III. Now,
though the proportionality constant AP of def“" is
negative if df,—dtn/tni becomes negative under some
specific path in region III, it is confirmed numerically that
the 2nd order plastic work increment df;def is still
positive even in such case, i.e., din(deis’ +desns’) +
dts(dyRe? + dyRis’) > 0. The method to avoid the condi-
tion of A“P <0 in region III is also described in
Appendix V.

FUNDAMENTAL FEATURE OF PRESENT MODEL
AND VALIDATION BY TEST DATA ON CLAY

Material Parameters and Characteristics of Yield Surface

The present model is capable of describing deforma-
tion and strength behavior of not only clay but also sand.
In this section, we will show the applicability of the model
to clay just under triaxial compression and extension
conditions. Table 2 shows the values of material
parameters for saturated Fujinomori clay (F-clay), which
is used for the validation of the model. Physical proper-

15 T 6 T
F 1 —calculated(p=const)
Rt"(a) ] R (b) = = =calculated{o,=const) ||
r ] O observed(p=const)

(b) stress ratio at peak R;—
initial OCR relation

(a) stress ratio at peak Ry —
density p relation

Fig. 13. Calculated strength of Fujinomori clay

0'3_0
IS5

Fig. 14. Yield surface of Cam clay model and tension zone on p-g
plane

ties of the Fujinomori clay are as follows: the liquid limit
wL=44.7%, the plastic limit wp=24.7% and specific
gravity Gs=2.65. The methods of sample preparation are
described in a previous paper (Nakai and Matsuoka,
1986). As indicated in the table, one parameter « is added
to the parameters which are fundamentally the same as
those of the Cam clay model. The values of parameters
except for a can be determined from consolidation and
shear tests on normally consolidated clay in the same way
as the Cam clay model and #;-clay model (Nakai and
Matsuoka, 1986). The value of a can be estimated from
the strength of over-consolidated clay. The relation
between stress ratio X; at peak strength and density p is
obtained from the condition of A°=0. This condition
leads to

)
g—tf + “t” -0 (53)
ii N
where
af 1 XB-2
9 | ot X 2ay) (54)

From this condition, we can obtain the relation between
the peak strength Ri=(01/03)omp and density p as in
Fig. 13(a). Figure 13(b) shows the relation between peak
strength and initial over-consolidation ratio on
Fujinomori clay, which is also calculated by the present
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model. As a method, we can estimate parameter a, utiliz-
ing this relation.

Figure 14 shows the yield surface of the Cam clay
model for Fujinomori clay in p-g plane. Figure 15 shows
the yield surface of the proposed model in (a) #x-fs plane
and (b) p-q plane. In these figures, the upper half indi-
cates the triaxial compression condition, and the lower
half indicates the triaxial extension condition. We can see
that the yield surface of #; model is symmetric with
respect to the #y-axis but not symmetric with respect to
the p-axis. It is also noted that the direction of plastic
flow of the #; model is not normal to the yield surface
represented in the p-g plane, because the flow rule is
assumed in modified stress #; space. Also, though the
yield surface of the original Cam clay model is not

R
S| =i > -
o3=0 .-
== comp.
,1’ M*
o
N ty
ext.
;=0
(a) Yield surface of proposed model and tension zone
on ¢y — ts plane
o370
q
omp.
M
1 -
0f
[3
5 N P

ext.

=0

(b) Yield surface of proposed model and tension zone
on p — g plane

smooth at the tip on p-axis, that of the proposed model is
smooth over the whole surface. The previous #; models
for clay and sand also have singular points at the origin
and the tip on the isotropic axis. Such smoothness of the
present yield surface is one of the advantages in numeri-
cal computations in the same way as the modified Cam
clay model (Roscoe and Burland, 1968). Now, the lines in
which the minor principal stress o is zero are indicated in
every figure. It can be seen that though models formu-
lated using p and g such as the Cam clay model have ten-
sion zones on and inside the yield surface, there is no ten-
sion zone in the yield surface formulated using 7y and fs.
Models based on the #;-concept not only are capable of
describing properly the influence of the intermediate prin-
cipal stress but also have above-mentioned benefit for
numerical computations.

Figure 16 shows the calculated relation between stress
ratio X=1s/ty and plastic strain increment ratio Y=
desup/dydee for constant mean principal tests (solid
curve) and constant stress ratio tests (symbols) on nor-

® OCR-1 (5/t 08
A OCR=8 X
—p=const 0.6/
I
y |
N/
oy |
|
1P -
|
L |
: 1 . | .9 1Yk
-3 -2 -1 0

-Y(=-deshp /dyhp)

Fig. 16. Calculated relation between stress ratio and pastic strain in-
crement ratio under constant stress ratio and under constant mean

Fig. 15. Yield surface of proposed model and tension zone principal stress
2 2
4P| Comp. G,~const. ap Ext. p=const.
1.5+ 1.5+
1k
0.5
| | £4(%)
0 5 10 15 20
5k 5
A observed
0 O observed 0 O observed (%) | °
& /103 calculated el /103 calculated ' 10 L ___calculated

(a) triaxial compression (o,=196kPa)

(b) triaxial compression (p=196kPa)

(c¢) triaxial extension (p=196kPa)

Fig. 17. Observed and calculated results of triaxial compression and extension tests on normally consolidated clay under monotonic loading
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A - - -0QCR=2
O --—OCR=4

(a) triaxial compression

63

2

0 ——OCR=1
A - - -0CR=2

(b) triaxial extension

Fig. 18. Observed and calculated results of triaxial compression and extension tests with different over-consolidation ratio under monotonic
loading
o] 2 4
/] a/p /oL p=392kPa
p=392kPa ap | Comp. (b) q 1; (C)
(@)
Comp. 1 1+ [ Comp.
<} 2
1+
' L
-10 -5 10 115 0 10 115 I
£4(%) £,(%) 0 I ]
‘ 2 3
-1+ O observed 1k 1k
Ext. 1 subloading t ;; model Ext. p=392kPa |
‘ 2

(a) g/p - g, relation

(b) g/p - & relation

(c) stress path

Fig. 19. Observed and calculated results of cyclic constant mean principal stress tests with constant amplitude of stress ratio

mally and over-consolidated clay. Here, the solid curve is
the same as that in Fig. 7. It is known experimentally that
the direction of plastic flow (plastic strain increment
ratio) is influenced by the stress path before peak strength
but is not influenced at peak strength. We can see from
Fig. 16 that the present model can describe well such
stress path dependency of plastic flow.

Triaxial Tests under Monotonic and Cyclic Loadings
Figure 17 shows the test results (dots) and the calcu-
lated curves of triaxial compression and extension tests
on normally consolidated clay under monotonic load-
ings. Diagram (a) shows the results of the triaxial com-
pression test under constant minor stress (o3=a,=196
kPa). Diagrams (b) and (c) are the results of triaxial com-
pression and extension tests under constant mean prin-
cipal tests (p=196 kPa). We can see that the present
model can describe well the deformation and strength of
normally consolidated clay in triaxial compression and
extension tests in the same way as the previous fj-clay
model. Figure 18 shows the results of triaxial compres-
sion and extension tests on clays with different over-con-

solidation ratios (OCR=1, 2, 4 and 8). Here, tests of
OCR =8 are carried out under p=98 kPa, and the other
tests are under p =196 kPa. We can see from these figures
that although the calculated curves for over-consolidated
clays in triaxial extension still underpredict the strength
and dilatancy, the model is capable of describing unique-
ly not only the influence of over-consolidation ratio on
the deformation, dilatancy and strength of clay but also
the influence of intermediate principal stress on them.
Figures 19 to 21 are the results and stress paths of drained
cyclic triaxial tests on normally consolidated clay. As
shown the in stress path of diagram (c) in each figure, Fig.
19 is the cyclic constant mean principal test under con-
stant amplitude of stress ratio, Fig. 20 is the results of the
cyclic constant mean principal test under increasing stress
ratio with number of cycles, and Fig. 21 is the results of
cyclic constant radial stress test. We can see that in spite
of using an isotropic hardening law, the proposed model
can describe cyclic behavior of clay under triaxial condi-
tions. This is due to the subloading surface concept and
the loading condition in Eq. (35). The reason why the
present model can describe the behavior of clays as they
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2 4
/] _
p=196kPa w Comp (D) q/p2 p=196kPa
Comp. 1 i
p=196kPa 2 Comp
1
1
-110 -5 15
! |
0 1 3 4
-1 O observed 1k -1+ -
Ext. subloading t;; model Ext. .
: -2

(a) ¢/p - g;relation

(b) g/p - &, relation

(c) stress path p(X98kPa)

Fig. 20. Observed and calculated results of cyclic constant mean principal stress tests with increasing amplitude of stress ratio

o) 2 5
ap ap Comp. (b =
6~196kPa L (2) | omp. (b) 4| o=const.
a,=196kP: 3
Comp. ¢ a Comp.
=2k
o
7
oo
1+
1 1 K
o
- _ 1 | |
1 ° 10 £y(%) 0 1 3 1
1k
-l O observed -1 ok Ext
Ext. subloading t;j model Ext.
! -3

(@) g/p - g relation

Fig. 21.

become stiffer with increasing number of cycles is because
the state variable p increases under cyclic loadings, even if
the clay is initially normally consolidated (p,=0).
However, in the case of one-directional cyclic loading
tests, the present model may overpredict the strains be-
cause of the isotropic subloading surface model.

VALIDATION BY TEST DATA ON SAND

Material Parameters and Triaxial Tests under Monotonic
Loading

Toyoura sand (mean diameter Ds,=0.2 mm, uniformi-
ty coefficient U.=1.3, specific gravity G,=2.65, maxi-
mum void ratio e, =0.95, minimum void ratio em,=
0.58) was used. Two kinds of procedures were used for
preparing specimens of sand with different void ratios.
Dense specimen was prepared by pouring the saturated
sand into the mold in several layers and compacting each
layer with a rod whose diameter was 6 mm so that the
specimen had a desired void ratio (eju=0.68). Loose
specimen (€iniia ~0.92) was prepared by depositing the
saturated sand slowly in de-aired water using a funnel
with an opening of 3 mm. Both specimens, prepared in
these ways, have quasi-isotropic structures. Every speci-
men was then consolidated isotropically to the prescribed
stress state and then was sheared and/or consolidated

(b) g/p - & relation

(c) stress path ~ p(X98kPa)

Observed and calculated results of cyclic constant radial stress tests

Table 3. Values of material parameters for Toyoura sand
A 0.07
K 0.0045
N=ecat Same parameters as Cam clay
p=98kPa & 1.1 model
g=0kPa
RCS:(O-I/ O-B)CS(comp.) 3.2
Ve 0.2
20 §ﬁa}_)e_ o-f_yi_cl_d_st_lrFaEe_(;a—m_e_ag ’
B ) original Cam clay at f=1)
a aur 30 Influence of density and
ae 500 confining pressure

along the given stress paths.

Table 3 shows the values of material parameters for
Toyoura sand. Unlike clay, the values of 1 and N cannot
be determined directly from isotropic consolidation test.
This is because it is difficult to make the state of sand
corresponding to the remolded normally consolidated
clay. The dots in Fig. 22 are the observed results of
isotropic compression tests on dense and loose sands,
arranged in terms of the relation between void ratio e and

NII-Electronic Library Service



ELASTOPLASTIC MODEL FOR SOILS 65

confining pressure p in logarithmic scale. So, assuming
the normally consolidation line (NCL) as the broken line
in this figure and referring to the relation between the
density p, the peak strength X; and the parameter a (see
Egs. (53) and (54)) of conventional triaxial compression
tests in the same way as over-consolidated clay, we can
draw the stress-strain curves to fit the observed ones. By

1.2

L isotropic
N compression

0.6

——dense €,3=0.658
0.4 |——loose €,9=0.880

] 1 A

] | 1
10° 10" 10* 10°° 10* 10° 10°

p (X98kPa)
Fig. 22. Observed and calculated results of isotropic compression tests
T T . - ; ;\;\
° p=196kPa €,95=0.666 drained by
g 3 a ===~ 01=0,=196kPa e;6=0.659 comp. g
o —-—g=0=196kPa €4,=0.664 ]

0 5 T0 5 20
£(%)
(a) triaxial compression

repeating this process by trial and error, a set of material
parameters for sand is determined. Here, to get better
fittings of the calculated curves to the data of shear tests
and consolidation tests in Toyoura sand, different values
of a (P and a"“), which are the parameters of G(p), are
used for the two components (dsi‘j’(AF) and dai‘j’“C)) in Eq.
(51), respectively.

Figures 23 and 24 show the observed results (symbols)
and the calculated curves of constant mean principal
tests, constant major principal stress tests and constant
minor principal stress tests on dense sand and loose sand,
respectively. The plots in these figures are arranged in
terms of the relation between stress ratio ¢/p, deviatoric
strain &4 and volumetric strain &,. In each figure, diagram
(a) shows the results under triaxial compression condi-
tion, diagram (b) shows those under triaxial extension
condition. We can see from these figures that the present
model can describe the stress-strain-strength behavior,
including the influence of stress paths, for sands under
triaxial compression and extension conditions from dense
state to loose state with unified material parameters.

The solid curves in Fig. 22 are the calculated e-log p
relations in isotropic compression. The value of ¢ in
Table 3 is determined so that the curves to agree with the
observed results represented by symbols. Figures 25 and

Fig. 23. Observed and calculated results of triaxial compression and extension tests on dense sand under monotonic loading

3 T T T - T _{_10 g\e:
o ——  p=196kPa e;4=0.851 drained |7 ¥
a === g=0,=196kPa €,=0.861 comp.

5 o —-—3=0,~=196kPa e94=0.832

£4(%)

(a) triaxial compression

Fig. 24.

T T T T g
° p=196kPa e,4=0.680 drained &
M oe ----oy=0,=196kPa ey=0.677 ext. L10
o —-—g=0=196kPa ¢€=0.677
S
2+ \
T +5
1 1 L
10 15 20
_ . £4(%)
(b) triaxial extension
3 T T ;\g
7 ' - L10 F
o ——  p-196kPa e19-0.866 drained [0
& & --==g=0,=196kPa €¢s=0.840 ext.
Uz_ o —-—g=0~196kPa e4,=0.847

(b) triaxial extension

Observed and calculated results of triaxial compression and extension tests on loose sand under monotonic loading
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Fig. 25. Observed and calculated results of isotropic and anisotropic consolidation tests on dense sand under compression condition
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Fig. 26.
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Observed and calculated results of isotropic and anisotropic consolidation tests on dense sand under extension condition
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(b) ¢, - p relation

Fig. 27. Observed and calculated results of isotropic and anisotropic consolidation tests on loose sand under compression condition

26 show (a) the e,-¢; relation and (b) the g,-log p relation
in isotropic and anisotropic consolidation tests on dense
sand under triaxial compression and extension condi-
tions, respectively. In these figures, R denotes the major-
minor principal stress ratio ¢;/a3. The solid lines are the
calculated results, and the symbols are the observed ones
that are the same as those in the previous paper (Nakai,
1989). Figures 27 and 28 show the same arrangements on

loose sand. It can be seen from these figures that the
model can describe the deformation behavior under
anisotropic consolidation, though the model overesti-
mates the positive dilatancy at large stress ratio (R =4) in
Figs. 25 and 26. If we employ the yield function (plastic
potential function) derived from shear tests and do not
consider the stress path dependency on the direction of
plastic flow, the dilatancy under anisotropic consolida-
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Observed and calculated results of isotropic and anisotropic consolidation tests on loose sand under extension condition

Fig. 29. Observed and calculated results of true triaxial tests on dense sand under monotonic loading

60°

(a) Directions of calculated strain increments (b) Directions of observed strain increments

Fig. 30. Directions of observed and calculated strain increments on
octahedral plane in true triaxial tests

tion is inevitably overestimated - e.g., overestimation of
K, value at one-dimensional consolidation.

True Triaxial Tests under Monotonic Loading

Using the experimental data on sand in the previous
paper (Nakai, 1989), we will check the applicability of
the present model in three different principal stresses.
Figure 29 shows the observed (symbols) and calculated
(curves) variations of the three principal strains (¢;, & and
&;) and the volumetric strain &, against stress ratio g/p in
true triaxial tests (§=15°, 30° and 45°) on dense sand
under constant mean principal stress (p=196 kPa).
Figure 30 shows the observed and calculated directions of
strain increments on the octahedral plane for these tests.
Here, the length of each bar is proportional to the value
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“of shear strain increment divided by the shear-normal
stress ratio increment on the octahedral plane. In each
figure, 6 denotes the angle between ¢,-axis and the corre-
sponding radial stress path on the octahedral plane,
where 8 =0° and 60° represent the stress path under triax-
ial compression and triaxial extension conditions, respec-
tively. There is the following relation between the angle 6
and the intermediate principal stress parameter b.

2tan 6
b=—F7—— 55
J/3+tan 6 (53)
where b is represented using three principal stresses as
p=2"% (56)
g)— 03

As can be seen from Fig. 29, the present model predicts
well the three-dimensional stress-strain behavior of sand
in the same way as the previous model, though the previ-
ous one cannot consider the influence of the density and/
or confining pressure. It is seen from Fig. 30 that the
present model also predicts the observed tendency that
the directions of strain increments deviate from the direc-
tion of shear stress with increase of stress ratio under
three different principal stresses. From Figs. 29(a) and
(b), i.e., & is negative in diagram (a) but is positive in
diagram (b), we can presume that the stress condition 8 in
plane strain condition (¢,=0) lies within 15° <6< 30°,
which is the same as results reported by many researchers.

CONCLUSIONS

The main results of this paper are summarized as
follows:
(1) A simple isotropic hardening elastoplastic model for
soils (named subloading #; model) is formulated by ex-
tending previous models. As mentioned in the introduc-
tion; This model particularly considers some mechanical
characteristics of soils, which the Cam clay model cannot
describe,

O (i) Influence of intermediate principal stress on the
deformation and strength of soil

O (i) Stress path dependency of the direction of plas-
tic flow

O (iii) Positive dilatancy during strain hardening

X (iv) Soil anisotropy and non-coaxiality

@ (v) Behavior of soil under cyclic loading

O (vi) Influence of density and/or confining pressure
on the deformation and strength

X (vii) Behavior of structured soil

X (viii) Time effect and age effect

Here, marks O, ® and X imply ‘fully-considered’, ‘half-
considered’ and ‘not-considered’, respectively.

(2) By referring to the subloading surface concept and
test results on clays with different OCR, the previous I
clay model, which was applicable to normally consoli-
dated clay, is extended to a model capable of describing
the behavior of over-consolidated soils as well - i.e., the
influence of density/or confining pressure. The present
model also takes into consideration the influence of inter-

mediate principal stress using the #; concept.

(3) This model is extended to one that can take into
account the influence of stress path on the direction of
plastic flow, without adding material parameter, by
dividing the plastic strain increment into two components
at the strain hardening region with increase of mean
stress, in the same way as the previous #; clay model.
(4) The present model can properly describe typical soil
behavior of normally consolidated soil and over-consoli-
dated soil in general stress conditions, though it has a few
material parameters (fundamentally the parameters of
Cam clay model plus one).

(5) The validity of the model to clay is confirmed by
conventional triaxial tests on normally consolidated clay
and over-consolidated clays with different OCR under
monotonic and cyclic loadings. It is also confirmed by
conventional triaxial tests and true triaxial tests that the
model can describe the deformation and strength behav-
ior of sand with unified material parameters, regardless
of soil density and confining pressure.

The present model has already been applied to the
analyses of geotechnical problems such as bearing capaci-
ty problems (Nakai et al., 2001), localization problems
(Hinokio et al., 2002), tunnel excavation problems
(Shahin et al., 2004a and b) and so on in 2D and 3D
conditions.
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APPENDIX I: CONCRETE EXPRESSION OF g5

The tensor a; is a dimensionless symmetric tensor
whose principal axes coincide with those of stress aj;, so
that it is obtained by transformation from its principal
values &; as follows:

@i = Qim Qjnlimn

Here, Qy is an orthogonal transformation that trans-
forms ordinary stress (g;) to their principal values (G;).

(A1)

Gij = Omi OnjOmn (A2)
where
g 0 O
65=|0 a O (A3)
0 0 o
and, from Eq. (2) &; is expressed as follows:
A /L
o= T?fu if i=j (Ad)

aij =0 if l;éj

Particularly under plane strain and asymmetric condi-
tions of (033 = 63;=0; and @3 =02 =0), a; is expressed in
the following manner. From Fig. A1, the angle 2« is given
using g;; and &;; by

Ta

0-12
v
Fig. A1l. Expression of ¢; and 6; on Mohr’s stress circle
Cosza_o'n"o'zz_ 01— 0n
01— 0y /(01— 0n) +4oi; (A5)

. 20'12 20'12

sin 2q=

01—-0; 4/(on— 02) +401,

Therefore, a; is expressed as follows from the coaxiality
between g;; and aj;:

at+a, a—a
a=— cos 2a
2 2
a+a a-—a
ay= - cos 2«
2
a3 =Aaz (A6)
a—a; .
ap= sin 2¢
an=a3=0

APPENDIX II:
Yes

Under triaxial compression condition, stress ratio
X=ts/ty and strain increment ratio Y=dedp /dy&p are
expressed as follows (Nakai and Matsuoka, 1986):

DERIVATIONS OF M*, X¢s AND

{ 2
Xsi=£<ﬁ—ﬁ) (A7)
tn 3 g3 ag;
dedip deba, + 2deka,
Y=—+—=
dyee  /2(de} a3+ 2deSay)
1+2 ﬁfl_o;g
o, dof
= (AB)

g, dgg
/2 («/: +d_e€)

Since de? =de}+ 2deb =0 at critical state, stress ratio Xcs
and plastic strain increment ratio Ycs at critical state are
expressed using the principal stress ratio at critical state

Res=(0; /0'3)CS(comp-) as

(A9; 17bis)
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Yesm et /R
S 2(/Res+0.5)

Therefore, substituting X=X and Y=Y into Eq.
(20), we can obtain the value of M™*, which represents the
ordinate intercept of Eq. (20) in Fig. 7, as a function of
RCS

(A10; 18bis)

M*=(Xcs’ + X" Yes)'# (Al1; 16bis)

APPENDIX III: PROPORTIONALITY CONSTANT
A EXPRESSED BY STRAIN INCREMENT dg;

Under elastoplastic region, the following equations
hold:

doy; = Diy defy = DS (dex — deby) (A12)
da?j=/la—f (A13; 21bis)
Y i,
— aou . o
A= m (A14; 33bis)
From Eqgs. (A12) and (A14), we can obtain
A-hP= af dO'ij :—af‘Dﬁ'k[ (dSk] - d&i]) (AIS)
aO'ij aGij
Substituting Eq. (A13) into Eq. (A15) leads
a
—fDicjkxdé‘kl
6aij
A= p o (A16)
e+ / D¢ oo —
aamn atop

APPENDIX IV: PARTIAL DERIVATIVES OF
YIELD FUNCTION AND STRESS VARIABLES

Generally, the yield function of the isotropic hardening
model based on f;-concept is given by the following form
as a function of mean stress 7y and stress ratio X

S=f{tn, X)=In ty+¢(X)~1n t; =0

and definitions of tensors and scalars related to #;-concept
are shown in Table 1.

We will first show the derivatives of f with respect to
modified stress ;.

or_af on

(Al17)

of 3X

= - Al8
aty 0dfn 0ty  0X Aty ( )
1
a—f=— (A19)
Oin In
Oty Otuaw)
— == A2
at; 0t % (A20)
af_ ,
a—)}—é X) (A21)

ZS dtl =0

I
—de,-‘;-)(m df,- 7/_\/7':0

A
| v

tNl t]\/'

Fig. A2. Regions in which four kinds of strain increments occur

90X _ 9(y/XiuXia) OXmn 1
ati‘ axmn atl X- In

Next, the derivative of f with respect to the ordinary
stress aj; is expressed as follows:

W _f on , of 0X

(5—Xa)  (A22)

= A23
aO'ij din anj X BGU ( )
4 I .
O _ 9 (3 _3> (A24)
doy doy \ I
oX 0 LT,
el a2 A25
aO'ij aO'ij ( 9]3 ) ( )

where, I}, I, and I; are the first, second and third invari-
ants of g;; as shown in Eq. (3). Therefore, the terms df,
and dfy can be given using general stress increment day;.

APPENDIX V: METHOD TO AVOID A“P<( IN
STRAIN HARDENING REGION

The value of AP becomes negative in the region IV in
Fig. A2. It is then assumed that the total plastic strain
increment occurs isotropically such as

5
def=119 T

(A26)
Referring to Eq. (46) and considering the compatibility
condition and the smooth change of the plastic strain
development at the boundary between region III and 1V,
lead to the following equation

af=Y g L (dee—d <L>)
aO'ij

Cp 1+ €o
1 G
_ Y gL <A“C’ +409 ﬂ) =0 (A27)
Boij Cp Ay
Therefore, A9 in Eq. (A26) is given by
A0 ? (A28)
1 (1 + G(ﬂ))
Cp Ak
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