Modern Approaches to Plasticity / D. Kolymbas (Editor)
© 1993 Elsevier Science Publishers B.V. All rights reserved.

Simple and Generalized Modelling
of Various Soil Behaviour in
Three-Dimensional Stresses

T. Nakai, H. Taki, T. Funada

1 Introduction

In constitutive models for sand which are applicable to practical problems,
the following points should be taken into consideration :

1 Influence of intermediate principal stress on the deformation and
strength of sand,

2 Stress path dependency of flow rule,
3 Positive and negative dilatancy,

4 Induced anisotropy by stress history such as cyclic loading, rotation
of principal stress axes and others,

5 Inherent anisotropy formed during deposition process or sample pre-
paration.

An isotropic hardening model (named ¢;;-sand model) which describes the
above points 1 to 3 properly is firstly presented (Nakai, 1989). This isotro-
pic hardening model is extended to a kinematic hardening model (named
kinematic ¢;;-sand model) that successfully describes the point 4 as well as
the points 1 to 3 (Nakai, Fujii and Taki, 1989). Furthermore, this kinematic
hardening model is extended to a model which takes into consideration not
only points 1 to 4 but also inherent anisotropy (point 5) by introducing a
fabric anisotropy tensor b;; (Nakai and Funada, 1992).

2 Stress Parameters Used in ¢;;-Concept

Before the formulation of models for sand, we will describe briefly the stress
parameters based on the ¢;;-concept and the method of applying this con-
cept to elastoplastic modelling. Through the ¢;;-concept, the influence of
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562 Modelling of Soil Behaviour

intermediate principal stress is successfully modelled. Table 1 shows the
comparison of various tensors and scalars related to stress between ordinary
concept and ?;;-concept. Equations (1a) to (5a) and (7a) are the well-known
scalars and tensors used in most models such as the Cambridge model. Fi-
gure 1 shows these quantities in o;;-space. Equations (6a) and (8a) are the
quantities introduced by Sekiguchi and Ohta (1977) so as to extend the
Cambridge model (Schofield and Wroth, 1968) to one in which initial stress
induced anisotropy can be taken into consideration.

In the ¢;;-concept, we firstly introduce a tensor a;;, which is a symmetric
tensor whose principal values are determined by the direction cosines of
spatially mobilized plane (briefly SMP) (Matsuoka and Nakai, 1974) and is
expressed as follows using the stress tensor (Nakai, 1989):

J J. .
aij = :]—37‘,-_]-1 =/ J_s(o'ik + L6k )(Now; + T3b;) ! (1)
2 2

where J; and J3 are the second and third stress invariants, and I3, I, and
I3 are the first, second and third invariants of r;;, which is the stress tensor
0;; to the one-half power such as TikTk; = 0i;. It can be seen from the above
equation that the variable a;; is a function of stress ratio. The modified
stress tensor #;; is then defined by Eq. (1b) as the product of o and ay;.
Employing t;; and a;; of Eqs. (1b) and (2b) in place of 0;; and 6;; of Egs. (1a)
and (2a), we can obtain analogically the scalar and tensors used in the t;j-
concept as Egs. (3b) to (8b). Figure 2 shows these quantities in the ¢;;-space.
Now, the influence of intermediate principal stress is naturally taken into
consideration by employing the quantities of Eqs. (1b) to (8b) in place of
those of Egs. (1a) to (8a) and assuming the flow rule not in o;;-space but
in ¢;;-space (Nakai and Mihara, 1984; Nakai, 1989).

3 Isotropic Hardening Model for Sand (¢;;-Sand Model)

3.1 OUTLINE OF MODEL

Since details of the model are described in another paper (Nakai, 1989),
only the outline is presented here. The total strain increment de;; is given

by the summation of the elastic component de¢., the plastic component

17
def}AF) which satisfies the associated flow rule in ¢;;-space and the plastic
component dsfj(m) which represents isotropic compression.
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ordinary concept ti;-concept
Oij (1a) | ti; = oirax; (1b)
4;; (unit tensor) (2a) | ai; {(2b)
p=0i;8i/3 (3a) | iv =ti;ai (3b)
8i; = 0i; — pdi; (4a) tfj = ti; —tna; (4b)
q = \/(3/2)si;si; (52) | ts = tfjtfj (5b)
i = 8i;[p (6a) | zij = ti;/tn (6b)
n=q/p=/(3/2)m;mi; (7a) | = = ts/tn = \/Zi;55; (7b)
n* = \/(3/2)(mi; — mio)(mi; —mijo) (8a) | z* = \/(zij — nij)(zi; — ni;)  (8b)

TABLE 1. Comparisons of various tensors and scalars related to stress between ordinary
concept and t;;-concept

oct.plane

Ojj-Space

FIGURE 1. Illustration of stress quantities in o;;-space which are used in the ordinary
concept

deij = defj + dely = defy + delf™") + dej®) (2)

The three components are calculated according to the following expression:

1+ v, e

dE,'j = E—dO','j = l’;—dakk&j (3)
p(AF) _ , Of

de;; = A—at,-j (4)
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564 Modelling of Soil Behaviour

FIGURE 2. Illustration of stress quantities in ¢;;-space which are used in ¢;; concept

4t = K (dp) %% (5)

Here, f is the yield function, and the bracket (dp) implies (dp) = dp if
dp > 0 and df > 0; otherwise (dp) = 0. Young’s modulus E, and the
coeflicient K are expressed as

E.=3(1-2v)P"/(mC.p™ 1) (6)
m—1
K =m(C; - Ce)fl-)—P—nT (P, : atmospheric pressure) (7N

a

Equations (6) and (7) can be derived from the relationship for the elastic
and plastic volumetric strains and mean stress under isotropic compression

such as
o=c{(&)" - (2)"} (s)

@i = - {(£)" - (2)"} (9)

The yield function f is given by
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o

X
f—lntN—1 1n|1—(1—a)—AF|-c—0 (10)

-
where
M* = X+ aYy (11)

Further, X; and Yy are given using the principal stress ratio
R = (01/03) f(comp.) and strain increment ratio Dy = (dey/de1)f(comp.) at
failure in a conventional triaxial compression test (Nakai, 1989).

Xf=§(\/R—f—\/RIf) (12

1-/R¢(1-D
VE(J/E; +05(1- D))}
The scalar A in Eq. (4) is determined as follows utilising that ”the plastic

work based on t;;”, W*? = | t,-jdsfj, is a quantity of state for sand under
monotonic loading;:

dW*P — K(dp) &t,'j

A= 7 3 (14)
Ot A
where dW*? is
oW OW>p
dW™? = dt dX
oty 5w 0X
_ m(Ci = Co)tRt! {1 (1) }wl:ﬂ:l
- V3Pm M*
X {—1—dt + 2 dX} (15)
in N M*-(1-a)X

In this model, the influence of intermediate principal stress on the deforma-
tion and strength of sand is taken into consideration by using the t;;-concept
as described in the previous section, the stress path dependency of flow rule
by dividing plastic strain increment into two components (see Eq. 2) and
the positive and negative dilatancy by employing W*P = [ t,-jdefj as a strain
hardening parameter.
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566 Modelling of Soil Behaviour

C, 0.84-10~2
G 0.60-10-2
m 0.3
Rf = (GI/US)f(comp.) 4.7
Dy = (dsv/dsl)f(comp.) —0.6
o 0.85

TABLE 2. Values of soil parameters for Toyoura sand used in analysis

3.2 VERIFICATION BY TEST RESULTS

Table 2 shows the values of soil parameters of medium dense Toyoura sand
(eo ~ 0.68). The values of C;,C, and m are determined from a loading and
unloading isotropic compression test. The parameters R 7 and Dy stand for
the principal stress ratio (01/03)s and the strain increment ratio (de,/de; )y
at failure under triaxial compression, and a also is related to the strain at
failure. So, the values of Table 2 can be determined from a test under the
stress path in Fig. 3.

Figure 4 shows the observed values (dots) and calculated stress-strain curves
of triaxial compression and triaxial extension tests under constant minor
principal stress, constant mean principal stress and constant major principal
stress. The model describes well not only the difference between triaxial
compression and triaxial extension but also the difference of stress-strain
curves and dilatancy due to stress path.

Figure 5 shows the observed values (dots) and calculated curves of mono-
tonic loading true triaxial tests under constant mean principal stress, ar-
ranged in terms of the relation between principal stress ratio and principal
strains. Figure 6 shows the observed and calculated directions of the strain
increments on the octahedral plane in these true triaxial tests. The model
predicts well the three dimensional stress strain behaviour of sand, inclusive
deviation of shear strain increment direction from that of the shear stress.
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FIGURE 4. Principal strains vs. principal stress ratio and volumetric strain in triaxial
compression and extension tests, (a) constant minor principal stress tests, (b) constant
mean principal stress tests, (c) constant major principal stress tests
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FIGURE 5. Principal strains vs. principal stress ratio in true triaxial tests, (a) § = 15°,
(b) 8 =30°, (c) 8 =45°

4 Kinematic Hardening Model for Sand (Kinematic
tz-j—Sand Model)

4.1 EXTENSION FROM ISOTROPIC HARDENING MODEL TO
KINEMATIC HARDENING MODEL

In order to extend the above isotropic hardening model into one which obeys
the kinematic hardening rule on the shear behaviour, we introduce the stress
ratio tensor z;; in Eq. (6b) and the scalar quantity of stress ratio X* in Eq.
(8b) in Table 1. Since under monotonic loading paths in triaxial compression
and extension conditions the following equation holds

X:=X"4+n (wheren = /n;;n;;) (16)
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FIGURE 6. Stress paths and strain increment vectors on octahedral plane in true triaxial
tests (a) observed, (b) calculated

we replace the stress ratio X in Eq. (10) by X* + n and give the yield
function by

2 lnll—(l——a)X L

= tn —
f=Inty 1-a M+

|—e=0 (17)

As known from Sekiguchi and Ohta model (1977) using Eqs. (6a) and (8a),
such formulation makes possible to take into consideration the stress ratio
history and rotation of principal axes. Now, though in Sekiguchi and Ohta
model the tensor 7;;o in Eq. (8a) is determined from the stress state before
loading and is not varying, we assume in the present model that the tensor
n;; in Eq. (8b) is movable with satisfying the following condition.

X* = \/(z,-_,- —nij ) (zij —ni;) =€ (= const.) (18)

Figure 7 shows the relation of the position between the current stress ratio
tensor z;; on the yield surface and the tensor n;; in the stress ratio space z;;.
When such a stress ratio increment dz;; as shown in Fig. 7 is applied, n;;
is assumed to move to the direction of (z;; — n;;) with keeping the distance
€. The following equations, hence, hold:

— 110 ~—



570 Modelling of Soil Behaviour

dnij = k(zij — nij) (19)
oX* 0X*
dX* = Z—dzij + —dn;; =0 20
X a.’r,‘j x]+8n,~j i ( )

From Eqs. (19) and (20), the increment dn;; follows as

Ti — ng)dz
dn;; = ( X*2) (zi5 — mij) (21)

The position of n;; corresponding to the change in z;; is successively obtai-

ned by Eq. (21) so that the direction of plastic flow of defj(AF) is determined
using Eq. (17) and the associated flow rule in ¢;;-space (Eq. 4). Here, when
under the condition of X* < £ a plastic strain increment occurs (f=0and
df > 0), we presume that the yield surface expands without change in n;;
like isotropic hardening model until X* becomes &.

Figure 8 illustrates the yield surfaces of t;;-sand model and kinematic tij-
sand model in ¢y — ts space under the stress condition of triaxial com-
pression. The shape of yield surface of isotropic hardening model is always
symmetric with respect to ty axis, whereas that of kinematic hardening
model inclines upward. However, both of the yield surfaces are common in
compression side so that the directions of plastic flow calculated by both
models are the same under monotonic loading stress path such as triaxial
compression. Figure 9 also shows schematically the change of yield surface
in {§ — ts space under shear loading and proportional loading. The yield
surface rotates about the origin under shear loading, because a kinematic
hardening rule is assumed in the stress ratio space. On the other hand, the
yield surface expands isotropically or anisotropically under proportional loa-
ding in the same way as the Cambridge model and the Sekiguchi and Ohta
model.

Next, we will discuss the hardening function. The scalar value A in Eq. (4) is
determined so as to describe the same stress-strain relationship as those in
the isotropic hardening model under monotonic loading. Now, the increment
dW*P in Eq. (15) is given by invariants of stress and stress increment alone,
le. tn,dtn, X and dX. Because the kinematic hardening model obeys the
kinematic hardening rule only in shear behaviour (change in stress ratio),
we introduce the stress ratio X and a stress ratio increment d X in place of
X and dX (see Fig. 10):
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dXxij

FIGURE 7. Kinematic hardening rule in stress ratio space (z:;)

Zi; X}

? = X cosf = ?2’ , (22)
dX = dX cosf = — (23)

where T, = Zij — nyj, and obtain the following equation:

+1 e —algm+1!
m(Ct - Ce)t% X -
dw*r = 1-(1-
V3Pm (1-a)7m
xd L dty + @ _Ix) (24)
IN M*-(1-a)X

Since X and d.X vary with stress even when the stress invariants are con-
stant, we can determine the scalar value of A in kinematic hardening model
by employing dW*? in Eq. (24). It is also noticed that X and dX coincide
with X and dX respectively under such monotonic loading paths as triaxial
compression and extension.

The isotropic hardening model is extended to one in which the stress induced
anisotropy can be taken into consideration only by introducing a stress ratio
X* and assuming a kinematic hardening rule in the stress ratio space z;;.
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FIGURE 8. Yield surfaces of isotropic and kinematic hardening models in ¢ — ts space

1s
3

ts

] N_,

N

tn

ts

s

FIGURE 9. Evolution of yield surface of kinematic hardening model represented in ¢ty —ts

space (a)under shear loading, (b)under proportional loading

FIGURE 10. Definition of X and dX in zi; space
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FIGURE 12. Stress paths and strain increment vectors on octahedral plane in path AD
and BC, (a) observed, (b) calculated
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FIGURE 13. Stress-strain relation in cyclic triaxial test under constant mean principal
stress, (a) axial strain vs. principal stress ratio, (b) principal stress ratio vs. volumetric
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FIGURE 14. Stress-strain relation in cyclic triaxial test under constant minor principal
stress, (a) axial strain vs. principal stress ratio, (b) principal stress ratio vs. volumetric
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FIGURE 15. Experimental and analytical results of circular stress path test on octahedral
plane, (a) variation of principal strains and volumetric strain, (b) stress path and strain
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FIGURE 16. Calculated variation of various strains under rotation of principal stress axes
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4.2 VERIFICATION BY TEST RESULTS

The soil parameter added in the kinematic hardening model is £ alone, which
represents the size of yield surface in the stress ratio z;;-space. This can be
determined from the elastic region under reversed shear loading, because the
elastic region (range of stress ratio X = ts/ty) corresponds to 2£ as shown
in Fig. 11. For medium dense Toyoura sand the value of £ is determined as
& = 0.3. The other parameters are the same as those of Table 2.

Figure 12 shows the stress paths and the observed and calculated directions
of the shear strain increments on the octahedral plane in true triaxial tests,
where the principal stress ratios are R = 0;/03 = 3.0 at A and B. It
has been known that in radial shear tests under three different principal
stresses (e.g. 6 = 15°,30° and 45°) the directions of shear strain increments
deviate leftward (towards the extension side) from those of shear stresses
(radial directions) with increase in stress ratio (see Fig. 6). Such a tendency,
however, is not necessarily observed in the paths AD and BC (e.g. see near
the intersection of § = 45° line and path BC of figure (a)). This difference
results in the influence of the stress path history. We can see from figure
(b) that this influence is properly taken into consideration in the present
model.

Figures 13 and 14 show the observed values (dots) and the analytical stress-
strain curves of cyclic triaxial tests (Figure 13 is under constant mean prin-
cipal stress, and Figure 14 is under constant minor principal stress). The
kinematic hardening model predicts well the behaviour of sand under cyclic
loading.

Figure 15(a) shows the observed and the calculated variation of the three
principal strains and of the volumetric strain under a circular stress path
(n = ¢/p = 1.0) on octahedral plane. Figure 15(b) shows the observed and
the calculated direction of the shear strain increments on the octahedral
plane, together with the stress path. The stress path is rounded anticlock-
wise from 6 = 60° to § = 60°. We can see from these figure that the model
describes well the behaviour of sand under rotational stress path in three-
dimensional stress too.

Figure 16 shows the analytical results of strains when only the principal
stress axes rotates with keeping all of the stress invariants constant. Here,
the stress condition is always under triaxial compression of oy /o3 = 4.0 and
p = 196 kN/m?. The horizontal axis o denotes the angle between vertical di-
rection (direction of initial major principal stress) and the direction of major
principal stress in every moment. This analytical result agrees qualitatively
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with the results reported before.

5 Kinematic Hardening Model for Sand with
Anisotropy (Kinematic ¢;;-Sand (Anisotropic) Model)

5.1 EXTENSION FROM MODEL FOR ISOTROPIC SAND TO MODEL
FOR ANISOTROPIC SAND

Even the kinematic hardening model described in the previous section can-
not take into consideration inherent anisotropy which is formed during the
deposition process or during the sample preparation. It is known that in-
duced anisotropy changes with stress state and does not considerably affect
the strength represented by effective stress (effective internal friction angle).
On the other hand, the degree of inherent anisotropy does not change even if
stress changes, and the strength as well as the deformation is influenced by
the inherent anisotropy. In this section, a method to take into consideration
the inherent anisotropy in constitutive models for sand is described. For this
purpose, the stress ratio tensor z;; is modified by a fabric anisotropy tensor
b;;; X* in Eq. (17) is replaced by X~ as follows:

_ o X" +n _
f=Inty 1_O[ln|1 (1-a) e |—c=0 (25)
where X is expressed as
X" = /(@ mij) (@ = n5) (26)

and 7;; is defined by the following equation using fabric anisotropy tensor

Ti; = %(tzkbkj t:bzktk]) % (27)
The fabric anisotropy tensor b;; is a symmetric tensor whose trace is 3
(bii = 3). Furthermore, if b;; = 6,; (unit tensor), 7;; (Eq. 27) is identical to
z;; (Eq. 6b) in Table 1. The yield function f of Eq. 25 moves kinematically
in the stress ratio tensor space (Z;;-space) with the distance X equal to £
for a change in Z;;, and expands isotropically for a change in mean stress
ty in the same way as that for isotropic sand.
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[b

Z.1b

FIGURE 17. Principal axes (I, /Iy and I11,) of fabric anisotropy tensor and angle §
between bedding plane and major principal stress plane

The quantities X and dX in Eq. 24 are also given by the projection of 7;;
and dZ;; in the direction of Z; as follows:

X =X cosf = xﬁij (28)
X
dX =dX cosf = —~ (29)

The concrete formulation of kinematic hardening model for anisotropic sand
is described in another paper (Nakai and Funada, 1992).

The model for isotropic sand is extended to one for anisotropic sand only
by introducing a fabric anisotropy tensor b;; and modifying the stress ratio
tensor z;;. Now, for natural deposit sand, since two of the three principal
values of b;; are identical, i.e. b, = b3, the tensor b;; can be determined from
the direction of deposition, the ratio of its principal values (b,/b3) and the
condition of b; = 3.

5.2 VERIFICATION BY TEST RESULTS

We will here analyse some kinds of element tests on anisotropic sands which
are formulated by pouring sand in one direction, and discuss the validity of
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FIGURE 18. Experimental results of isotropic compression test on anisotropic sand
(6=0°)

the proposed model by comparing the analytical results with experimental
data. In Fig. 17, the axes Iy, I, and I11l; imply the principal axes of b;;,
and Il — I11, plane is the bedding plane so that the principal values in I,
and I11I, directions are identical (b = b3). The angle between the bedding
plane and the major principal stress plane is equal to 6. The only parameter
added in the model for anisotropic sand is the ratio b, /bs.

Figure 18 shows the results of isotropic compression test on anisotropic
Toyoura sand whose bedding plane is horizontal (§ = 0°), arranged in terms
of axial strain ¢, and volumetric strain ¢,. It can be seen from the figure
that the observed relation does not satisfy ¢, = 3¢, (dash-dotted line)
under virgin loading because of inherent anisotropy, but the sand deforms
isotropically under unloading and reloading (de, = 3de;). Such behaviour
is described well by the proposed model as shown in Fig. 19.
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FIGURE 19. Analytical results of isotropic compression test on anisotropic sand (§ = 0°)
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FIGURE 22. Calculated stress-strain relation in plane strain tests on anisotropic sand

Figure 20 shows results of mean principal stress tests on isotropic and ani-
sotropic (6 = 0°) Toyoura sand under triaxial compression and extension
conditions. Figure 21 shows the analytical results corresponding to Fig. 20.
In Fig. 21, the results of b; /b3 = 1.0 are for isotropic sample. The analytical
results in Fig. 21 describe well the differences in deformation and strength
characteristics for both isotropic sample and anisotropic sample.

Plane strain tests and triaxial compression tests were performed by Oda et
al. (1978) on anisotropic Toyoura sand. Various angles é (Fig. 17) between
major principal stress plane and bedding plane were employed for sample
preparation. Figure 22 shows the calculated stress-strain curves correspon-
ding to the plane strain tests. The calculated relation between principal
stress ratio (01/03)s and the angle § is shown in Fig. 23 (figure (a): plane
strain tests; figure (b): triaxial compression tests). The influence of the angle
0 on the strength is also satisfactorily described by the model.
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FIGURE 23. Calculated relation between stress ratio at failure and angle §, (a) plane

strain,

(b) triaxial compression

6 Conclusions

(1)

(2)

A modified stress tensor t;; is presented to describe uniquely the de-
formation and strength characteristics of sand in three-dimensional
stresses. The stress tensor t;; is given by the inner product of the
usual stress tensor o;; and the symmetric tensor ai; whose principal
values are the direction cosines of SMP. The influence of intermediate
principal stress is properly taken into consideration in elastoplastic
models by formulating the yield function and others using t;; in place
of 0;; and by assuming the flow rule not in o;; space but in t;; space.

An isotropic hardening model for sand is formulated using the ti;-
concept. In the model, stress path dependency of the flow rule is ta-
ken into consideration by dividing the plastic strain increment into
two components: the plastic component which satisfies the associa-
ted flow rule in #;; space and the plastic component which represents
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isotropic compression. This model can also describe positive and ne-
gative dilatancy by employing the plastic work W*P based on ¢;; as a
strain hardening parameter.

(3) The isotropic hardening model is extended to a kinematic hardening
model to take into consideration stress induced anisotropy in sand
such as cyclic loading, rotation of principal stress axes and others. A
kinematic hardening rule is assumed in the stress ratio tensor z;; space
so that the yield surface rotates about origin under shear loading and
expands isotropically or anisotropically under proportional loading,.

(4) The above model is extended to one which take into consideration
inherent anisotropy as well. Only by modifying the stress ratio tensor
r;; with a fabric anisotropy tensor b;;, the behaviour of sand with
inherent anisotropy is naturally described.
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