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AN ISOTROPIC HARDENING ELASTOPLASTIC MODEL
FOR SAND CONSIDERING THE STRESS PATH
DEPENDENCY IN THREE-DIMENSIONAL
STRESSES

Teruo Nakar?

ABSTRACT

An isotropic hardening elastoplastic constitutive model for sand is developed by extending
the model for clay proposed before. This model for sand (named #,;-sand model) can precisely
take into consideration the influence of intermediate principal stress on the deformation and
strength characteristics by using the concept of the mechanical quantity #;;, and the influence
of stress path on the direction of plastic flow by dividing the plastic strain increment into
two components, in the same way as the previous model for clay (#;;-clay model). In the
present paper, a new “plastic work based on #,;7 W*? is defined, and it is experimentally
shown that W*? is proper as the quantity of state for sand. Then, the model for sand is
formulated by employing W*? as the strain hardening parameter, in place of the plastic volu-
metric strain ¢,? in the model for clay.

The validities of the model are confirmed by various shear and consolidation tests under
triaxial compression, triaxial extension and three different principal stresse conditions and
stress probe tests under triaxial compression and extension conditions. All of the soil pa-
rameters of the model can be determined by a conventional triaxial compression test after
loading-unloading-reloading isotropic consolidation.

Key words constitutive equation of soil, dilatancy, laboratory test, sand, shear strengh,
static, stress path, stress-strain curve (IGC : D6)

the derivation process of model is simple and

INTRODUCTION clear but also that the soil parameters of the

When analyzing numerically the behavior model are small in number and can easily be
of soil foundations and earth structures in determined, and “generalized” means that
practice, we must employ a simple and the model can uniquely predict various soil
generalized constitutive model for soils in the behavior under general three-dimensional
analysis ; here, “simple” means not only that stress conditions. Now, the well-known
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120 NAKAI

Cam-clay model (Roscoe, Schofield and
Thurairajah, 1963 ; Schofield and Wroth,
1968), which is one of the simplest models
for clay, has problems in the evaluation of
the influence of intermediate principal stress,
the influence of stress path and others. On
the other hand, several more generalized
models have recently been developed, but
most of them are not simple.

Nakai and Matsuoka (1983 b) developed a
constitutive model in which the influence
of intermediate principal stress and stress
path are properly taken into consideration.
In this model, the influence of intermediate
principal stress is considered by using the
extended concept of “Spatially Mobilized
Plane” (briefly SMP*), the influence of stress
path by dividing the strain increment
into three components (shear, consolidation
and elastic components). However, to deter-
mine precisely the values of soil parameters
of this model, we have to perform two
kinds of constant mean principal stress tests
under different mean principal stresses and
an isotropic consolidation test.

Then, proposed was a simple and generaliz-
ed elastoplastic constitutive model for clay
which is named ?#;;-clay model (Nakai and
Matsuoka, 1986) ; the influence of intermedi-
ate principal stress is considered using a
mechanical quantity for soil #;; which is
the generalized idea of the concept of SMP*,
and the influence of stress path is considered
by dividing the plastic strain increment into
the component satisfying the associated flow
rule in #;;-space and the component com-
pressed isotropically, regardless of using one
yield function and one strain hardening
parameter. As a result, its fundamental
soil parameters are the same as those of the
Cam-clay model.

In the present study, a simple and gener-
alized elastoplastic model for sand, which is
named ¢45-sand model, is presented by extend-
ing the ¢#;;-clay model mentioned above.
On the derivation of this model, we par-
ticularly take notice of the following three
points where the stress-strain behavior of
sand is different from that of clay :

(1) Unlike clay, sand generally shows
positive dilatancy in shear even in normally
consolidated conditions except for very loose
sand.

(2) We usually utilize the concept of
state boundarysurface in for mulating models
for clay so that plastic volumetric strain
&,? is employed as the strain hardening pa-
rameter. However, in the case of sand plastic
volumetric strain cannot be used as the strain
hardening parmeter, since it is not a quantity
of state in the same way as the plastic shear
strain and others, as mentioned later.

(3) The plastic and elastic volumetric
strains of sand under consolidation are ac-
curately given in the form of a power law
of mean principal stress p, whereas those of
clay are expressed using linear relations be-
tween void ratio and In p.

Throughout this paper, the term “stress”
is to be interpreted as “effective stress”.

DEFINITION OF MECHANICAL QUAN-
TITY ¢;; AND STRESS AND PLASTIC
STRAIN INCREMENT PARAMETERS
USED

In most of elastoplastic constitutive models
such as the Cam-clay model, the yield func-
tion and/or the plastic potential functions
are formulated using the following stress

parameters and plastic strain increment
parameters
1 1
p=5(0tato) =730y (1)

‘Z:«/%\/(O'x"%)z'l‘(0'2“0'3>2+‘(0'3—0'1)2

=/ (041)*— (3[2) 64304 (2)
devp=d€1p+d€2p+de3p =d€mp ( 3 )
dedp__Q (dalp—d€2p)2+ (d&gp

3 —dey?) 4 (des? —de,?)?

=§¢ (@e?) = (3[2)deyPdes P (4)

However, it has been known that consti-
tutive models using these parameters cannot
describe the stress-strain behavior of soil in
three-dimensional stresses uniquely. Then,
a mechanical quantity #,; has been proposed
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Fig. 1. A cubical soil element and

Spatially Mobilized Plane (plane ABC)
in three-dimensional stresses

to describe the three-dimensional stress—
strain behavior of soils, and an elastoplastic
model for clay using this #;;~concept has been
developed. Since the details of this mechan-
ical quantity #;; and the model for clay are
described in other papers (Nakai and Mihara,
1984 ; Nakai and Matsuoka, 1986), we will
show here only the outline of the concept of
ti

Fig.1 shows a cubical soil element and the
“Spatially Mobilized plane (SMP)” in a
three-dimensional space, where I, II and III
axes represent the directions to which three
principal stresses ¢;, ¢, and ¢; are applied,
respectively. The SMP is the plane ABC,
and the values at the points (A,B and C)
where the SMP intersects these three axes
are proportional to the square roots of the
respective principal stresses (Matsuoka and
Nakai, 1974, 1977). The direction cosines
(a;, a, and a3) of the normal to the SMP
are expressed as

1/ PA

where J;, J, and J; are the first, second and
third effective stress invariants and expressed
byithe following forms using three principal
stresses :

(t=1,2,3) (5)

Ji=0;+0,+ 0
Jy=010,+0,05+0;0,

e

J3=0,050,
The mechanical quantity ¢;; is given by the
following tensor which is expressed by the
product of stress tensor ¢; and tensor aj
which has principal values of (a;, a; and aj).
L1 =0t (7>

Here, #;; is a symmetric tensor whose
principal directions coincide with those of
015, because both ¢;; and a;; are symmetric
tensors and the principal directions of ¢y
and a,; coincide. The tensor a;; is concretely
given by the following equation.

ayy = Jo Ty (010+15045) (I1- 0y

+1I3-0x)™" (8)

The derivation process of Eq. (8) and the
definition of (I, I, and I,) are indicated in
Appendix L

The stress parameters (¢y and tg5) used in
the model based on the #;;~concept are given
by the normal component ON and the parallel
component N7 of the principal value vector
of ¢, O_’I:=_t:=(t,. ty, t3), to the SMP as
shown in Fig.2, and are also equivalent to
the normal and shear stresses (ogyp and
teup) Oon the SMP, respectively.

ty=tia,+ta,+1t5a,

=1y;a4 (9

< Osup = 014,24+ 030, ‘I‘0'3432=3—> (9),

Fig. 2.

Stress parameters
represented in principal value space
of ¢,

(¢xy and ty

NII-Electronic Library Service



122 NAKAI

de?

Fig. 3. Plastic strain increment param-
eters (degyp™? and dygyp*?) represented
in plastic principal strain increment
space

ts=+ (02 F 17+ 1%) — 1y’
=ty t15— (tsyas;)* (10):

=r :\/@1"02) 2a,%a.*+ (0, 03)%as’as’
=Tour R DA

TJ.T.—-9.J.2
/LTSI a0,
2

Similarly, if it is assumed that the directions
of plastic principal strain increments coincide
with those of principal axes of 1 the
plastic strain increment parameters (desyr*®
and drsyp*?) are also given by the normal
component ON and parallel component NP of
the plastic principal strain increment vector,
— —

0P=d€ip=<d51p, dsgp, d63p>, to the SMP as
shown in Fig. 3.

degup* =de,Pa, +desPay+desPay
—de an
drsup*? = (de,?* +de,?* +deP*) — degyp*?’
= /deyPde,,P — (deysPayy)® 12

According to the t;-concept, if we make
a yield function andfor a plastic potential
function using the stress parameter (Zy and
ts) given by Egs. (9) and (10) instead of
(p and ¢) given by Egs. (1) and (2) and
assume the flow rule in #;;-space instead of
o1-space, the stress-strain behavior in three-
dimensional stresses can be described with
unified soil parameters.

QUANTITY OF STATE FOR SAND

In elastoplastic constitutive models for clay
based on the critical state concept (e.g.
Schofield and Wroth, 1968 ; Roscoe and
Burland, 1968), plastic volumetric strain,
e,?, (or void ratio e) is used as the strain
hardening parameter, because it has exper-
imentally been confirmed that void ratio of
clay is a quantity of state which is determin-
ed by the current stress condition alone
regardless of the stress path history (Henkel,
1960). On the other hand, it has been in-
dicated that void ratio is not necessarily a
quantity of state for sand (Tatsuoka, 1972).
Then, in this section we will discuss about
the quantity of state for sand on the basis
of triaxial compression and extension test
results.

Fig.4 shows the stress paths in triaxial
tests on medium dense Toyoura sand (initial
void ratio e,=~0.68) in terms of the relation
between axial stress ¢, and radial stress o,.
Here, points A, B and C represent the
isotropic stress conditions (R=0,/03=1)
where respective mean principal stresses p
are 196, 392 and 588 kN/m?; points D,E,F
and G the anisotropic stress conditions (R=

Fig. 4. Stress paths of triaxial compres-
sion and extension tests for examining
quantity of state for sand
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Fig. 5. Relation between ¢,? and &,

oi/os=04/6,=4) in triaxial compression ;
points D/, E’ and F’ the anisotropic stress
conditions (R=g¢,/0;=0,/0,=4) in triaxial
extension. Performing four kinds of triaxial
compression tests (paths : ADEFG, ACFG,
AFG and ABEFG) and three kinds of triaxi-
al extension tests (paths : AD'F/, AC'F’ and
AF"), we will discuss what physical quantity
is appropriate as the quantity of state for
sand. Let us consider four quantities—the
plastic volumetric strain e,?, the plastic
principal strain difference ¢,P-¢;?, the plastic

work Wr=
based on ¢#;;” W*? which is given by

W*p:ftzjdssz

o1ydey? and the “plastic work

- f (b~ degue™ 25 draue™  (13)

where ¢;; is the mechanical quantity given
by Eq. (7), and (¢y and zg) and (degyp*? and
drsup*?) are the stress parameters and the
plastic strain increment parameters given by
Egs. (9 to (12), respectively. The validity
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(b) triaxial extension

Fig. 6. Relation between (¢,7-¢,?) and &y

of second equal sign in Eq. (13) is discussed

in Appendix II. Figs.5 to 8 show the varia-
tions in these quantities along the seven
kinds of stress paths under triaxial compres-
sion and extension conditions. In these
figures, the axes of abscissas represent the
values of ¢y which is given by the following
equation using mean principal stress p and
stress ratio X=tg/ty.
ty= b
X2+1
The dots enclosed with circle in these figures
denote the observed values at the stress con-
ditions of A, D, E, F, G, D’ and F’. It is
obvious from Figs.5 and 6 that the plastic
volumetric strain ¢,? used in most of constitu-
tive models for clay and the plastic principal
strain difference ¢,P-¢;? (or the plastic octa-
hedral shear strain y,.?) are unsuitable to

(14)
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Fig. 7. Relation between W? and ¢y

the quantity of state for sand, because these
plastic strains depend on the stress paths at
the same stress state. Next, as is seen from
Fig.7, the plastic work W? does not much
depend on the stress paths if the stress condi-
tions are limited in triaxial compression or
triaxial extension alone. However, from
the comparison between diagrams (a) and
(b), we can find that the values of W? in
triaxial compression are larger than those in
triaxial extension at the same stress ratio and
mean stresses(for example, compare the values
at D and F with those at D’ and F’, respec-

NAKAI
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” N
tively). Thus, W? also may be inappropriate

as the strain hardening parameter of the con-
stitutive model for sand in three-dimensional
stresses. On the other hand, Fig.8 may
indicate that the values of “plastic work
based on 2,7 W*? are uniquely determined
regardless of the stress path history and the
stress conditions (e. q. difference between tri-
axial compression and extension). We
therefore employ “plastic work based on #;;”
W*? as a strain hardening parameter of the
present model for sand.

ELASTOPLASTIC CONSTITUTIVE
MODEL FOR SAND

The plastic strain increment tensor de;?
is assumed to be divided into two compo-
nents : the plastic strain increment which
satisfies the associated flow rule in the #;;-
space, dey 74P, and the plastic strain in-
crement compressive isotropically, de,?79,
in the same manner as the model for clay
proposed previously (Nakai and Matsuoka,
1986).

de“p:dew" (4F) +d€“p(IC) (15)
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ELASTOPLASTIC MODEL FOR SAND 125

These two components are given by the fol-
lowing equations, because the direction of
dey#4F) is normal to the yield surface f in
the ¢;-space, and de¢;?99 is the isotropic
strain increment :

dey PP = . .gi_c_ (16)
t'U

de, P40 =K(dpy ¥ (p=oufd) (D)

Here, d,; is the Kronecker delta, and <dp)

implies that

<dp>={dp dep>0

0 if dp=0

Throughout this paper, superscripts e, p,
(AF) and (IC) denote the elastic component,
the plastic component, the component satisfy-
ing the associated flow rule and the com-
ponent compressive isotropically, respective-
ly.

(18)

Determination of de;;#7®

It is well known that there are linear
relationships between elastic and plastic vol-
umetric strains (e,° and ¢,?) and In p (p=
mean principal stress) in the consolidation
test on clay. On the other hand, in the
case of sand these volumetric strains under
isotropic consolidation are exactly expressed
not by the linear relationships to the loga-
rithm of mean stress but by the following
power law of mean stress

wel(F)-(R)T o

ool -(2)] @

1.0
&
05~
IS SR SR VU (O S ' PR 1
0 05 10 o 03 15 20
(—pq—) ' (Pa= 98 kWm?
Fig. 9. Results of loading and unloading
isotropic consolidation tests on

Toyoura sand

where p, is the initial mean principal stress
and P, (=98kN/m?) is the atmospheric pres-
sure. Fig. 9 shows the results of the loading
and unloading isotropic consolidation tests on
medium dense Toyoura sand (e,~0.68), as
plotted in terms of the relation between e,
and (p/P,)™. From this figure, the coeffi-
cients in Egs. (19) and (20) for Toyoura sand
are determined as C,=0.84, C,=0.60 and m=
0.3 for dense sand. If it is assumed that
plastic volumetric strain compressive isotrop-
ically is given by Eq.(20) regardless of
stress state, de;;?79 of Eq. (17) are expressed
as

dz-:”f’ o —_—davp [040)] .%
m-—1 6
=m(C—C) Ty cdpy 2
=Ky (21)
so that the coefficient K in Eq. (17) is
Pm—l
a

Determination of dey ;P 4T

It can be considered that there is the fol-
lowing unique relation between the stress
ratio (¢g/ty) and the plastic strain increment
ratio (degyp™ P [dygyp*? A7) in the same
way as the z4-clay model :

ng—%é-}- Y, (23)

e*(AF)

=—-SSa-

RS
Fig. 10. Proposed relation between stress

ratio (Z5/ty) and plastic strain incre-
ment ratio (—degyp*?UP [dygyp*PAR)
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and Xy and Y, are the values of X and
Y at failure (see Fig.10). Now, X, and
Y, are determined as follows using the
principal stress ratio at failure, Ry, and
the gradient of dilatancy curve at failure,
Dy, in a conventional triaxial compression
test as shown in Fig.11 :if it is considered
that the strength of soils in three-dimensional
stresses is uniquely described by the SMP
failure criterion (Matsuoka and Nakai, 1974,
1977), Xy is expressed in terms of Ry from
Egs. (9 and (10) and the condition of ¢,=
g3 and a,=a;.

Xr=sltn) = Tsup/Osur) 5
VN2 /1
o CL P B

Furthermore, under the triaxial compression
condition (¢,>0,=0¢3; and de,>de;=de;) the
plastic strain increment ratio Y is expressed
in the following form from Egs. (11)and (12).

y = desup™® _ dePa,+2desPay
 drswe™*? \/ 2 (de,Pag—desPa,)
3: de,g?
— 1+21/Z <d€1p>
= =2 (25)
Y-
O3 de,?
Here, since at failure the elastic strain

increment becomes relatively small in com-
parison with the plastic strain increment and
the strain increment ratio is hardly affected
by the stress paths, the plastic strain incre-
ment ratio at failure Y, is given using R;y
and Dy in a conventional triaxial compression
test.

>N 1 devp 1
1+24/R;, - {_2_< o >f_?}

Yf:
e VAN
V2R ~5(%5) )
VZ IR, +0.5(0—D,)}
where
1+sin ¢/
R E<~g1—> — . (comp.) 27
d O3 f(comp.) 1_51n¢/(comp.) ( )
and
de
D= ”
! <d€1 >f(comp.) (28)

Throughout this paper, symbols with sub-
scripts f, (comp.) and (ext.) denote the
values at failure, under triaxial compression
condition and under triaxial extension condi-
tion, respectively.

Because it is assumed that the directions of
principal axes of #;; coincide with those of
the plastic principal strain increments and
the associated flow rule holds in the #;;-space,
the following normality condition can be
obtained.

dtudswp (AF) :dtN‘d€SMp*p (4AF)
+dtg-drsus*?“ =0 (29)

Solving the differential equation which is

derived by combining Egs. (23) and (29)
gives
— X
lntN—!-l__‘; e L

=0 (30)
where M* is the ordinate intercept in Fig.
10 and given by

M*=Xs+aY; (31)
and ty, is the value of ¢y at #z5=0.

Now, as mentioned in a previous section,
we employ the “plastic work based on #;;”,
W#*r, given by Eq.(13) as a hardening
parameter (Nakai, 1987). Under the virgin
isotropic consolidation (¢,=¢:=0;), tx, ts,
desyup*? and dysyp*? given by Egs. (9 to (12)
are expressed in the following form because
a,=a,=ay;=1/4/3 and de,?=de,P=de,?

In=p 32)
ts=0 (33
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de,? _m (= Ce)

*k
degyp™?

SVET s R P
m(Ct e) m_ .
=R pe T G0
dysup™?=0 (35)

where Eq. (20) is utilized to obtain Eq. (34).

Therefore, when the stress condition (zy,

ts) changes from (g 0) to (¢y;, 0), Eq.

(13) defining W*? takes the form
W*pzftNdESMp*p

— v m(Ct Co

. Jngtw&N
=K+ {ty ™ — L™t} (36)
where
m(C;—C,)

K €1

T V3 (m+ )P,

tn1 is expressed as

From Eq. (36),
W *p 1/m+1
tN1:< jd +in™ > 38

Substituting Eq. (38) into Eq. (30), we can
obtain the following yield function because
the direction of dey?4" is normal to the
yield function

f—lntN'I‘

1n‘1 11— w)M*

1 W= N

(W*?=0 when ty=ty, and t3=0)

Now that the yield function is given by the
above equation, we can calculate de; ;74P
using Eq. (16). Here, the proportionality
constant 4 in Eq. (16) is determined as fol-
lows : since the yield function f is given in
the form of f=f(tu, ap, W*p) "—‘f(d’w, W*p)
=0, the consistency condition reads

of of
Do Wt gV =0 @O

The increment dW*? is given in the follow-
ing form by using Egs. (15) to (17)

dW*p=t”d€wp=t“(d€”f"(‘4m +d€¢jpuc)>
~1, j(A 0F  K<dp) 5“> (a1

Combining Egs. (40) and (41), we determine
A in the form.

0 0
f O 4004 5 2L 1 S Kiap)
= 3f oF

OW*? Bz, TH
where from Eq. (39), 0f/oW*? is expressed as

of -1
OW* — (m+1) (W Kty )

(43)

Complete Form of the Constitutive Model

The elastic strain increment tensor de;;® is
given by use of generalized Hooke’s law
1+y y
Ee —-—E—:—dakk6“ (44>
where Young’s modulus E, can be expressed
as follows by utilizing that de;;*=de,* satisfies
Eq. (19).

_ 3(1—2p)P,™

d&we =

e mcepm—l
(v.=Poisson’s ratio) 45)
Therefore, the total strain increment ten-

sor dey; is given by the following form as
the summation of de;;? in Egs. (15) to (17)
and deyf in Eq. (44).

dé‘“:dewp-}-ds”e
—___—de”p(AF) _[_de“p(IC) -{—dS“e (46)

Here, de; ;749 is calculated from Egs. (16),
(89) and (42), de#Y9 from Egs. (17) and
(22), and deyy¢ from Eqgs. (44) and (45).

Let us summarize the development of
strains under various stress paths using Fig.
12 where the yield surface (f=0) is drawn
in the (¢y, tg) space.

(i) If the stress condition lies inside the
current yield surface or moves from point A
to region I (f<0 or df=0) :

Fig. 12.
sented in (¢y, t5) space and three re-
gions where developments of strain
are different when stress condition
moves from point A

Proposed yield surface f repre-
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dEijstwe (47)
(ii) If the stress condition moves from
point A to region II (f=0, df>0 and dp=
0 :
d&‘”:dé“p (AF) +d8”e (48)
(iii) If the stress condition moves from
point A to region III (f=0, df>0 and dp>
0):
de,y=de, 2 A +de, IO +dey st (49)

VERIFICATION OF PROPOSED MODEL
Sand Used and Determination of Its Soil

Parameters

Saturated Toyoura sand was used in the
experiments. The mean diameter of the
sand is 0.2 mm, the uniformity coefficient is
1.3 and the specific gravity is 2.65. The
maximum and minimum void ratios of the
sand are 0.95 and 0.58. Each of the speci-
men was prepared not to have inherent
anisotropic structure, and to be medium
dense (initial void ratio e,~0.68). The
details of specimens, apparatus and test pro-
cedure was described in a former paper
(Nakai and Matsuoka, 1983a). Some of the
test results presented in this paper also are
the same as those reported in the former
paper.

The values of soil parameters of the medi-
um dense Toyoura sand (e,~0.68) are listed
in Table 1. The values of (C,, C, and m)
are determined from a loading and unloading
isotropic consolidation test, since the plastic
and elastic volumetric strains, ¢,? and ¢,7Y9,
are given by Egs. (19) snd (20), respectively
(see Fig.9). Next, Ry and Dy, which stand
for the principal stress ratio (o¢,/g;)s and the
strain increment ratio (de,/de,)s at failure

Table 1. Values of soil parametere for
Toyoura sand used in analysis

C: 0.84 %1072

C, 0.60x10"2

m 0.3
Ry=(01/03)fcomp. 4.7
Dy=(de,/de1) fccump.> —0.6

a 0.85

under triaxial compression, are determined
from an arbitrary drained triaxial compres-
sion test (see Fig.11). This is because the
stress ratio and the strain increment ratio of
sand at failure are independent of the change
in mean stress under shear loading. Lastly,
while a denotes the linear gradient in Fig.
10, it is not necessary that the value is de-
termined from such an arrangement shown
in this figure. Since the value of « usually
lies between 0.6 and 0.9, we can estimate
the value of « by assuming a proper value of
a and fitting the calculated stress-strain
curve to a test result : e.g. the above-
mentioned triaxial compression test which
is utilized to determine Ry and Dy. Generally,
the value of Poisson’s ratio of elastic materi-
als is not less than 0.0. So, the value of
Poisson’s ratio v, in Egs. (44) and (45) is usu-
ally assumed to be 0.0, because the elastic
shear strain of sands is relatively small.

Consequently, all of the soil parameters
can be determined by performing a conven-
tional triaxial compression test (e. g. constant
radial stress test) after loading-unloading-
reloading isotropic consolidation, as shown in
Fig. 13.

Consideration of Stress Ratio-Strain Incre-
ment Ratio Relationships

Fig.14 shows results of various triaxial
compression and extension tests (p=const,,
gs=const., g,=const. and R=g¢,/s3=const.)
with respect to the relation between the stress

ARLDLQ)

Fig. 13. Stress path of test to determine
values of soil parameters
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comp, ext
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Relation between ¢/p and de,/de; in triaxial compression

and extension tests under various stress paths

ratio g/p and strain increment ratio de,/deg,
according to the stress and strain increment
parameters used in most of the models
such as Cam-clay model. Fig.15 also shows
the same results in terms of the relation
ts/ty and degyp*/dysyp*. Furthermore, Fig.
16 arranges only the plastic strain increment
satisfying associated flow rule, de;#“4P, in
the same relation as Fig.15. The compo-
nent de;;#4P is derived by removing the
plastic component de,#¥? and the elastic
component de;® from the total plastic strain
increment de;;. Here, dey 779 and deyy are
evaluated by Egs. (21) and (44).

It is seen from Fig.14 that the strain
increment ratio de,/de; depends not only on
whether triaxial compression or extension
condition but also on the kind of stress path.
On the other hand, as is seen from Fig. 15,
the strain increment ratio degyp*/drsye™ is
almost independent of the difference between
triaxial compression and extension near fail-
ure, - whereas that is influenced by the kind
of stress path except for near failure. It is
also seen from Figs.14 and 15 that the test
results where mean stress increases(g;=const.
and R=const.) deviate leftward and the
test results where mean stress decreases (¢,=
const.) rightward from the dotted lines which
denote the relation under constant mean stress
(p=const.)in average. Now then, it is noticed
that though the stress ratio-strain increment
ratio relations in Figs. 14 and 15 are influenced
by the stress condition and the stress path,
the results in Fig.16 are uniquely arranged.

10
) 106D * D 196D ts L
o P =196md) @ D = |
B Gy 1360 » O3 196D - Ty | o ¥
v Oy =1960d ¥ O =196MNm)
0 R=234 ®R=234 o § . b
05T op- ¥
| = 7 v
o [ - 'Q_%ﬂ_ k4
» " a "Eﬁ"!): v vv

08070605040302Q1001020304050607
S
TN

Fig. 15. Relation between tg/ty and degyp®/
dygup* in triaxial compression and exten-
sion tests under various stress paths

10
comp, L
o P =196(Nmd) Xt
o O3 =196kNmD XET_S__
v O =196 N[ 1
0 R =234 0.5‘* ext i
e D =1960nd)
» O3 =196kvmd
Y G =196(kNm
® R=23.4
L 1 1 L 1 Yf 1
05-04-03-02-01 0 Ot 02 03 04 05 06 07
"Y= &gspn
dr;;l(AF)

Fig. 16. Relation between {¢g/ty and
degyp*P AT [dpgy pHPAD) in  triaxial
compression and extension tests under
various stress paths

In Fig. 16, the relation of Eq. (23) (the linear
solid line) calculated using the soil parame-
ters mentioned before agrees well with the
test results. Comparing these three figure,
we can understand that introduction of the
concept of #;; is effective for describing
uniquely the soil behavior in three-dimen
sional stresses, and division of the plastic
strain increment into two components
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(dey 24P of Eq. (16) and de; 279 of Eq. (17))
is effective for considering the influence of
stress path on the soil behavior.
Analysis of Triaxial Compression and
Extension Tests

Fig.17 shows the observed values (dots)
and the analytical curves of constant mean
principal tests under triaxial compression and
extension conditions, arranged in terms of
the relation between principal stress ratio g,/a;
and principal strains (e; and e;). The #;-
sand model proposed here describes well not
only the difference between compression and
extension but also the tendency that the
strains become large with increase in mean
principal stress. Now, if we represent de,®
and de,?Y9 not by a power law in Egs. (19)
and (20) but by linear relations between e and
log » which are seen in clay, the calculated

%- —— 0 P =196(KN/m2)
7l =——=0 p =392(KN/m§)
Comp — v p =784(KN/m¢)
6
\ 5
TS P Pl
i
-5 3 -2 <

3 4 5
€1 (%)
(a) triaxial compression

5 =4
€3(%)

- —— @ P =196(KN/m?)
ext. —— 8 P =392(KN/m?)

~—
~—

=5 ~4 -3 -2 -1 0
€3(%)

34 5
€1 (%)
(b) triaxial extension
Fig. 17. Principal strains vs. principal
stress ratio in constant mean principal

stress tests

stress ratio-strains relation in these figures
becomes to be independent of mean principal
stress in the same way as #;;~clay model.

Fig.18 shows the obseved values (dots)
and the analytical curves in various shear
tests under triaxial compression and exten-
sion conditions in terms of the relation
among o,/03 ¢; and e,. It is seen that z;-
sand model describes the experimental results
under various stress paths inclusive of the
difference of soil dilatancy due to the stress
path.

Fig.19 shows the ¢,—log p relation in
isotropic and anisotropic consolidation tests
under triaxial compression and extension
conditions. Here, the solid lines denote the
analytical results and the dots the observed
values, and R represents the principal stress
ratio ¢,/g;. The analytical results describe
the observed dilatancy under anisotropic con-

I v O =196( kN/m?)
o P =196(KN/m?)
O3 =196(KN/m?) 2
——— & {~Ca + 7COT)/6=196KN/m)

-
o’

=1

NG
&C/o)

(a) triaxial compression

196( kN/m2)
36(KN/m?2)
196(KN/m2)

ext.

3%
&)

(p) triaxial extension

Fig. 18. Major principal strain VS.
principal stress ratio and volumetric
strain in various kinds of stress paths
tests
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solidation at high stress ratio, while it tends
to overestimate. In figure (b), the observed
volumetric strains of R=4 (V) become less
than those of R=1 but are still compressive.
On the other hand, corresponding calculated

comp.
05 O R=1
D R= 2
A R=3
) V R=4
k>
>
LL} -
O S 3 i [N R
e 10 10%
i g © (kN/m?)
-05

(a) triaxial compression

ext.
' O R=1
05 M R=2
=
~— v =
5°
R
>
w
O 1 1 Lo 1
10
P (kN/m2)
-05

(b) triaxial extension
Fig. 19. Mean principal stress in logarithm
scale vs. volumetric strain in isotropic
and anisotropic consolidation tests

Si
3 5 "
©® Rzconst. COm:J.Aé ext/,/
4 o &
0@ D=i96kN/m? ‘g A
os pP=392 3}— s PN = /// ‘B
D 7 -7
l 02/44/ -t Aa
=
"""l n oM
15

45 -0 -0 0 08 10 20 25 30
d&;
. —de
Fig. 20. Relation between principal stress
ratio (o,/0;) and principal strain
increment ratio (—de;/de;) in constant
mean principal stress tests and
constant principal stress ratio tests
under triaxial compression and
extension conditions

result is expansive because of overestimation
of dilatancy in particular. In Fig.20 are
arranged the results in shear tests (p=196
kN/m? 382kN/m?2) and consolidation tests
(R=1,2,3 and 4), in terms of the relation
between stress ratio ¢,/0; and the strain

! S

€3 €2 | "G 6 =15
g o] 7 E] 0
C (o] 6 o]
b o A~
O 5 O
\ °
)
!
2
D=196kN/m?

=5 -4 -3 -2 - 0 1 2 3 4 5

EZ, €3 (O/o) €1 (%)
(a) 60=15°(b=0.268
=i |
S3-9 6=30"
€3 €2 €1
: ©lo 6 80 0° r
™~ ANEEN e

P=196kN/m?

-5 ~4 -3 -2 - 0 1 2 3 4 5

€3 (%) €1, €2 (°)
(b)) 6=30°(b=0.5
S P
G349 0 :=45
(63 6 9r:2 %1
-~ (o] 5 (o] O/
9] Oy O
L, o/
x [¢}
e]
A
2
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-5 -4 -3 -2 -1 0 1 2 3 4 5
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(e) 6=45°(b=0.732)

Fig. 21. Principal strains vs. principal

stress ratio in true triaxial tests
under constant mean principal stress
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increment ratio (—des/de;). Here, open dots
and solid lines represent the experimental
and analytical results under triaxial compres-
sion condition, and solid dots and broken
lines represent those under triaxial extension
condition. Although there is a little dif-
ference between the experimental and analyt-
ical results in consolidation tests because of
the overestimation of dilatancy mentioned
above, the analytical results generally express
the stress path dependency of strain incre-
ments in direction as well as the difference
between triaxial compression and extension.

Analysis of True Triazial Tests

Fig. 21 shows the observed values (dots)
and the analytical curves of true triaxial
tests under constant mean principal stress
(p=196 kN/m?), arranged in terms of the
relation between principal stress ratio o4/o;
and principal strains (e;, &, and &,). Here,
0 indicates the angle between ¢;-axis and
the corresponding radial stress path on the
octahedral plane—e. g. §=0° and 60° represent
the stress paths under triaxial compression
and extension conditions, and 0°<#<60° the
stress paths under three different principal
stresses. Further, the parameter & which
represents the relative magnitude of inter-
mediate principal stress is defined as

J;—03

b=

(50)

observed
=] 3

Fig. 22. Observed strain increment vectors
on octahedral plane in true triaxial
tests

tion :

_ 2tané
~ /3 +tanf
Figs. 22 and 23 show the observed and calcu-
lated directions of the strain incrementsjon
the octahedral plane in these tests, respec-

b (6D

T
15 o0

calculated

2 3

Fig. 23. Calculated strain increment
vectors on octahedral plane in true
triaxial tests

oz

(b) path ADE

Fig. 24. Stress paths of true triaxial tests
where values of b and p change
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tively. The length of each vector is the
amount of shear stain increment on the
octahedral plane divided by the shear-normal
stress ratio increment on the octahedral
plane. As is seen from Figs.21 to 23, the
proposed model predicts well three-dimension-
al stress-strain behavior of sand, inclusive
of the deviation of shear strain increment
from shear stress in direction.

Next, let us analyze the true triaxial tests
where the relative magnitude of intermedi-
ate principal stress and the mean principal
stress change during shear loading. Fig. 24
shows the stress paths of tests in the princi-
pal stress space, together with the Mohr-
Coulomb criterion represented by dotted
curves and the SMP criterion represented
by solid curves. The stress states in figures
(a) and (b) change as follows :

(a) A(e;=1, g:=1, 0;=1)—B{,1,1)

—C(4,4,1)—E4,4,4)

el
x €3 [ G
E(:44) =
o 24e 3
3,
Cl6.4.1) o . g, ‘O"' L L
a] o 13 )
D 4 +2 o
2L e e /u L |
(@]
[N
.c,
o€y 20
A'L’L/l L 1 1 ! ) !
()—4~3—2-'101234

(a) path ABCE

oo
E(4, 4,4) A L‘jﬂ—‘l- > e
° & o ol
L o} o
0 €3 o 4 °
o (o)
D6.251) @1 o)
a (o]
[e]
2
‘L‘]"] 1 L ' . 1 1
Al )-4 3 -2 -1 0 1.2 3 4
VA
(b) path ADE
Fig. 25. Principal strains vs. principal

stress ratio in true triaxial tests
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(b) A(O‘lzl, 0'2=1, 0'3:1>—‘>D (4, 2.5, 1)

—E(4, 4,4)

02

r predicted
B

ozr

8
AE4(C%)

observed

where each unit of stress is (X98 kN/m?). AE€4Ch) c
Fig. 25 shows the observed values (dots) and
the analytical curves under the stress paths
in Fig. 24, arranged in terms of the relation D
between principal stress ratio and principal 0
strains. It is seen from these figure that 5 A 0 3 -4 E
the proposed model describes the observed AEGV(%)
stress-strain behavior of sand under arbitrary

three-dimensional stress path as well.

(AN A Q1|

B1
F AEYClo)

~01- 01k

Fig. 29. Predicted and observed relation
between de; and 4e, in stress probe
test under triaxial compression (series

D

Analysis of Stress Probe Tests

As shown in Fig.26, stress probe tests
under triaxial compression condition (series
I) are carried out by applying the stress

increments (each magnitude is v/ (4p)?+ (4q)? o FF,prd"md o opserved

=0.4) so that the stress state moves from N N 0267 G EDp'J 82

the basic stress point O (p=2x98 kN/m?, -o1 D,AEV(I°) o A&
g=1.5x98kN/m?) to a corresponding point BEL) o A€ ] o

(A to F) respectively, with reference to the 03 | s

stress probe tests by Tatsuoka and Ishihara o ,

(1974). Further, two series of stress probe Ko[eT%

tests are carried out under triaxial extension A|r|os =05

condition. One is a series of tests (series II) - <08 - -08

whose stress paths are the same in (p, g) L o7 L o7

space as those of series I under triaxial com- | o8 | s

pression condition (see Fig.26). The other

is a series of tests (series III) where the m oo F o

stress paths coincide with those of serises I B - -0 - -0

in (ty, ts) space as shown in Fig.27. The Fig. 30. Predicted and observed relation
stress path vectors represented in (g, 0,) between de; and 4de, in stress probe

space of these three series are illustrated in
Figs. 28 (a) and (b). In Figs.26 to 28, the
dash-dotted lines denote the failure lines and
the broken lines the initial yield surfaces of
ty;-sand model.

Figs.29 to 31 show the observed and
predicted strain increment vectors in these
three series of tests (left figures are the
predicted and right figures the observed).
Here, the volumetric strain increment AJe,
and the shear strain increment dey are defined
as de,=de,+2 de, and de;=(2[3)(de,—
de,) under triaxial conditions. From the
comparison between the observed and pred-
icted results in each figure, we can find
that in general the model predicts well the
variations in direction and magnitude of the

test under triaxial extension (series

1)
0ir o1
edicted observed
AEall) | DEACh)
Pt : il
S =i 01 03 7 B 04
AGVEI) \ GV
o ¢ o
-0} -01}-8
of
»
-02L -02%
Fig. 31. Predicted and ovserved relation

between de; and de, in stress probe
test under triaxial extension (series

IIT)
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observed strain increment vectors due to the
directions of stress probe. This is because
the plastic strain increment is divided into
two components (dey 74P and de; ,2Y9) in
the model, though one yield function and
one strain hardening parameter alone are
used in the model.

Next, Let us compare the three series of
tests each other. It is obvious from the
comparison between Fig.29 and Fig.30 that
there are large differences of the strain
increments in direction and magnitude be-
tween triaxial compression and extension
tests, though the stress paths of series I and
II are the same in (p, ¢q) space. On the
other hand, the results of series III in Fig.
31 whose stress paths coincide with those of
series I in (#y, tg) space almost correspond
to the results where sign of 4de; in
Fig.31 is inverted (since de; is defined
as deg=([3)(dey—de,) in these figure),
though in Fig.31 the magnitude of observed
vectors are a little small than that of predictd
vectors. Therefore, it may also be noticed
from the above comparison among three
series that the three-dimensional stress-
strain behavior of sand are uniquely
described not by the model using (p and ¢)
but by the model using (zy and t5) as the
stress parameters.

CONCLUSIONS

The main results of this paper are sum-
marized as follows :

(1) As a quantity of state for sand in
three-dimensional stresses the “plastic work
based on ¢;;” W*? is newly defined, and its
validity is checked based on the experimental
results.

(2) By employing W*P as the strain
hardening paramenter in place of the plastic
volumetric strain ¢,? in the model for clay,
a simple and generalized elastoplastic model
for sand (#;;-sand model) is formulated. In
the present model, the influence of the
intermediate principal stress on the stress—
strain behavior are considered by using the
concept of #;;, and the influence of stress

path on the direction of plastic flow by divid-
ing the plastic strain increment into two
components regardless of a set of yield func-
tion and hardening parameter, in the same
way as the #;;-clay model proposed before.
In addition, this model can describe both
negative and positive dilatancies in three-
dimensional stresses, unlike the model for
clay.

(3) The model can predict well not only
results of the triaxial compression and exten-
sion tests but also results of the true triaxi-
al tests under various kinds of stress paths.
The stress probe tests under triaxial compres-
sion and extension conditions can uniquely
be analyzed by the model.

(4) It is also verified experimentally that
the strain increment de;; is divided into three
components (elastic strain increment deg®,
plastic strain increment satisfying associated
flow rule in ¢;-space de; " and plastic
strain increment compressive isotropically
Clsljp(IC)'

(5) All of the soil parameters of the
model can be determined by a conventional
triaxial compression test after loading—
unloading-reloading isotropic consolidation.
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APPENDIX I

Concrete Expression of ayy:
From Cayley-Hamilton’s theorem, we have
following equation

Tikfkﬂ”zj—lfTik"kj+12‘7‘w—Is‘ 5zj=O (AD

where ry; and 0, are a symmetric tensor and
the unit tensor respectively, and I,, I, and
I, are the first, second and third invariants
of ry. If we consider 7y; to be the stress
tensor ¢;; to the one-half power such as

TiTrj =01 (A2)
Eq. (A 1) becoms

rtj("'jk +1,e 5%) :Ii' ik +1,- Oir

Thus
ry= 20w+ 13 0e) (Ors+ 120 0e)™ (A 3)
From Eq. (6), a4 is expressed as
ay =TTy oriyt (AD

where J, and J; are the second and third
stress invariants of Eq.(5). Substituting
Eq. (A 3) into Eq. (A 4) gives

ayy=+/JelJs (o +T5+ 8:2)
X Lyo0p+T300)7! (8)

APPENDIX II
Verification of Egs. (13) and (29) :

As is seen from Figs.2 and 3, the second
equal sign in Eq. (13) and the first equal sign

—_— ——p

in Eq. (29) are valid when dygyp*® (NP in
Fig.3) agrees with Z (ﬁ in Fig.2) in
direction. Since this agreement is necessari-
ly shown wunder triaxial compression and
extension conditions, let us check here the
agreement under three different principal
stresses.

Fig. A1l shows the observed angle g be-

- &°
—z &

d‘;bip 7;
p

\J 69

4

(34
FETE ST

S

a 9=15°
o e=3° 2k
A 6:45°
1 1 1
-3¢° 20° 4 ¢
p

Principal stress ratio vs. angle

1'6’ 50’ 3¢

Fig. A 1.

—— — . .
between dysyr*? and g in true triaxial
tests
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—— —_—
between de;? and ¢ in true triaxial
tests

—_—_— —
tween dysyp*t and £, in the same true triaxial
tests as those shown in Figs. 21 to 23. Since
the observed angle f is almost zero degree
regardless of the stress ratio and the stress

path, we can see that Egs. (13) and (29) are
valid.
On the other hand, Fig. A2 shows the

observed angle B’ between j;;?; and ;in the
same tests, on the basis of Mises’ type pa-
rameters used in models such as Cam-clay
model. Here, B’ also indicates the angle

. . . —_—-_-)
between plastic shear strain increment dye,”

and shear stress z-—oc: on the octahedral plane.
It is seen that under three different principal
stresses the angle B’ is not zero degree and
increases with the increase in stress ratio
(it is also obvious from Fig. 22). Therefore,
the following formulation is not valid except
for under triaxial compression and extension
conditions :

AWP=g,yde,?=pde+q-des?  (A5)

which is often utilized in most of models.
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