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A GENERALIZED ELASTOPLASTIC CONSTITUTIVE MODEL
FOR CLAY IN THREE-DIMENSIONAL STRESSES

Tervo Nakar* and Hajmme Matsvoka®

ABSTRACT

A simple and general elastoplastic constitutive model for clay is proposed that describes the
stress-strain behavior of clay under various stress paths in three-dimensional stresses. This
model takes into account precisely not only the influence of the intermediate principal stress
on the strength and deformation characteristics of clay but also the influence of the stress
path on the deformation characteristics of clay. The former influence is considered by using
the mechanical quantity #;; which is a generalized idea of the extended concept of “Spatially
Mobilized Plane” (briefly SMP*), and the latter influence by dividing the plastic strain in-
crement into two components regardless that only a yield function and a strain hardening
parameter are employed. Furthermore, the soil parameters of the proposed model are easily
determined in the same manner as the well-known Cam-clay model.

The validities of the proposed model are checked by analyzing various element tests on
clay under triaxial compression, triaxial extension and plane strain conditions and comparing
these analytical results with the experimental results.

Key words : cohesive soil, constitutive equation of soil, dilatancy, laboratory test, shear
strength, static, stress path, stress-strain curve (IGC :D6)

soil behavior (e.g. differences of deformation

INTRODUCTION and strength characteristics of soils under

When we apply a constitutive model for
soil to the deformation analysis of soil foun-
dations and earth structures, it is necessary
for the model to describe uniquely the stress-
strain behavior of soil under various three-
dimensional stress paths. However, since it
is very difficult to express the mechanical be-
havior of soil in general stress system direct-

ly, we usually consider separately the in-

fluence of the intermediate principal stress on
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triaxial compression, triaxial extension and
plane strain conditions) and the influence of
the stress path on soil behavior (e.g. differ-
ences of deformation characteristics of soil
under constant minor principal stress path,
constant major principal stress path, constant
mean principal stress path and constant stress
ratio path). For taking into consideration
the influence of the intermediate principal
stress in elastoplastic constitutive models for
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82 NAKAI AND MATSUOKA

clay, e.g. Roscoe and Burland (1968) mod-
ified a strength parameter in the model so
as to satisfy Mohr-Coulomb’s criterion, and
Lade (1979) introduced a stress ratio param-
eter J3}[J3(J,, Jy=first and third effective
stress invariants). For taking into consid-
eration the influence of the stress path, Pen-
der (1977) and Ohmaki (1979) proposed dou-
ble hardening models which contain two sets
of yield functions and plastic potential func-
tions (usually, one is for shear and the other
for consolidation).

The authors developed a constitutive model
in which the influence of the intermediate
principal stress is considered by using the ex-
tended concept of the “Spatially Mobilized
Plane” (briefly SMP*), and the influence of
the stress path by dividing the strain incre-
ment into the shear component due to the
change in stress ratio and the consolidation
component due to the change in mean prin-
cipal stress (Nakai and Matsuoka, 1981, 1983
b). Then, this model were applied to the
finite element analyses of soil foundations
(Nakai et al., 1982 ; Nakai and Matsuoka,
1983 b ; Nakai, 1985). However, constant
mean principal stress tests and a consolidation
test should be performed to determine pre-
cisely its soil parameters (2%, u*, p'*, 7%
Cs* C, C, K, and ¢’). On the other
hand, the well-known Cam-clay model (Ros-
coe, Schofield and Thurairajah, 1963 ; Scho-
field and Wroth, 1968) can not describe ade-
quately the influence of the intermediate
principal stress and the influerce of the stress
path, though its soil parameters (C,, C, and
¢") are easily determined.

In the present study, a simple and general
elastoplastic constitutive model for -clay,
which is named the #;-clay model, is pre-
sented by making use of the basic idea of the
above-mentioned constitutive model based on
the concept of SMP* while incorporating the
merit of the Cam-clay model. That is to
say, the influence of intermediate principal
stress is considered in this constitutive model
by using a mechanical quantity #;; which is
a generalized idea of the concept of SMP*.
Furthermore, the influence of the stress path

is considered even though its foundamental
soil parameter are the same as those of the
Cam-clay model. This is because the plastic
strain increment is divided into the compo-
nent satisfying the associated flow rule and
the other component, though only a yield
function and a hardening parameter are used
in the model. After describing the contents
of the proposed model, the validities of the
model are confirmed by the various element
tests under triaxial compression and exten-
tion conditions and others.

Throughout this paper, the term “stress”
is to be interpreted as “effective stress”.

OUTLINE OF MECHANICAL QUANTI-
TY ¢,

Since the details of the mechanical quantity
t;; were described in the former paper (Nakai
and Mihara, 1984), only the brief explanation
of ¢;; is shown here.

Fig.1 shows a cubical soil element and the
“Spatially Mobilized Plane(SMP)” in a three-
dimensional space, where I, Il and III axes
represent the direction to which three prin-
cipal stresses ¢,, g, and ¢; are applied, respec-
tively. The SMP is indicated by the plane
ABC, and the values at the points(A, B and
C) where the SMP intersects these three axes

i 1, Pme3
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Fig. 1. A cubical soil element

" and Spatially Mobilized

Plane(plane ABC)in three-
dimensional space

NII-Electronic Library Service



ELASTOPLASTIC MODEL FOR CLAY 83
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Fig. 2. Explanation of mobilized
angles é,,,; ({,i=1,2,3;i<j)

are proportional to the roots of the respective
principal stresses as seen from the equations
insetted in Fig.1 (Matsuoka and Nakai, 1974,
1977). Here, the angles ¢, j=1,2,3;
i<j) represent the mobilized angles between
respective two principal stresses (see Fig. 2).
Therefore, the direction cosines(a;, a, and
a;) of the normal to the SMP are expressed
as
a=/ 0 (=129 (D)

where J,, J, and J; are the first, second and
third effective stress invariants and expressed
by the following forms by the use of the
three principal stresses.

Ji=0,+02} 05

Jy=0103+0:03+030, (2)

J3=0,0205
The mechanical quantity #;; is a symmetrical
tensor whose each principal value (¢,, ¢, and
t3) is the product of the corresponding prin-

cipal stress and the corresponding direction
consine of the SMP as follows :

Li=ao,
ty=aso; (3)
t3=azo;

The tensor z;; can also be expressed as

Lij=a Orj (4)
where g;; is the stress tensor, and ay; is the
tensor whose principal values are given by
the direction cosines(a;, a, and a;) of the
SMP in Eq. (1). Here, since the principal
values a;(¢=1,2 and 3) are the function of
stress ratio as seen from Eq. (1), the tensor
t;; given by Eq.(4) is considered to be a
“stress tensor” reflecting the induced aniso-
tropy of such a granular materials as soils

Fig. 3. Stress parameters (fy
and Zg) represented in prin-
cipal value space of #;;

caused by the change in stress ratio(Nakai
and Mihara, 1984).

The stress parameters(¢y and £g) used in
the constitutive model based on the #;; con-
cept are defined as the normal component ON
and the parallel component NT of the prin-
cipal value vector of ¢, Fsz: (21, tg, E3),
to the SMP as shown in Fig.3, and are also
equivalent to the normal and shear stresses
(osyp and zgyp) on the SMP, respectively.

ty=ta,t+las+1za, (5
< Osnp=01a,*+0:,a,° + 0,a,° —3—> (5):

ls
=4/ (t1as—t:0,) %+ (f2a5— t3a5) *+ (30, — t1ay)®
(01—03)%a, a,’

(6)
<ETSMF: + (03—03)%a,% a4 (03—0,)%asta®
» _‘/JngJg 9J3> (6)2

From Egs.(5), and (6), the stress ratio,
X=tg/ty, are also given by

‘/Jl —9J; (7)

For reference, the stress parameters(p and
g) which are often used in many constitutive .
models such as the Cam-clay model are ex-
pressed as

on‘mzl‘(0'1+0'2+0's> (8)

:/71/(01 05)%+ (03— 03) %+ (03—0)"
(9
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84 ) NAKAI AND MATSUOKA

Now, when we develop an elastoplastic con-
stitutive model of soil, we usually consider
the yield function and/or the plastic potential
function by the use of the stress parameters
(p and ¢) of Egs.(8) and (9) and assume
the flow rule in a space of stress, ¢;;. How-
ever, such a constitutive model can not de-
scribe the stress-strain behavior of soil under
three different principal stresses by the same
values of soil parameters, as seen from e.g.
Cam-clay model. Frankly speaking about a
merit of introducing the proposed #;; concept,
it becomes possible to describe uniquely the
soil behavior in three-dimensional stresses
by specifying the yield function and/or the
plastic potential function using the stress
parameters(#y and #g) instead of (p and ¢)
together with the flow rule in the #;-space
instead of the g;;-space (Nakai and Mihara,
1984).

ELASTOPLASTIC CONSTITUTIVE MOD-
EL FOR CLAY

As shown in Eq. (10), it is assumed that
the plastic strain increment tensor, de;)?, is
divided into two components; the compo-
nent which satisfies the associated flow rule
in the #,;-space, de;?4F), and the component
compressive isotropically, de; 79

dew-p:deijp(AF)+dsijp(w’ (10)

These two plastic strain increment tensors,
de; P40 and de;#79, are given as follows,
since the direction of de;?4P is normal to
the yield surface f in the ¢#;;-space, and
dey 299 is the isotropic compression compo-
nent : '

of

(AF) — .

d&‘“p =/ atw 1D
dai,w@:%x«dm 12

Here, §;; is the Kronecker delta, and {dzy>
indicates that

_[dety if dtx>0

<dtN>“{ 0 if dty<0

In the present paper, superscripts e, p, (AF)

and (IC) denote the elastic component, the

plastic component, the component satisfying

a3

the associated flow rule and the component
compressive isotropically, respectively.

The way to determine the yield function
f, the proportionality constant 4 and the
coefficient of isotropic compression component
K will be discussed next.

I) Determination of yield function f

In the Cam-clay model, the yield function
(plastic potential function) of the original
model is determined from the normality con-
dition and the following stress ratio-plastic
strain increment ratio relation :

cde® .. g _ .\
d—edp—-M » (M =gq|p at citical state)
14

using the stress parameters given by Egs. (8)
and (9) and the plastic strain increment param-
eters given by

def=de,P+de,p+de,? (15)

de.,P= 1/_2— (de P —de,?)? 4+ (de,? —de,?)?
@ = 3 -|-(d€3p—d61p)2

16

It has, however, been shown by test results
on clay and sand that such a equation as Eq.
(14) using the stress and plastic strain in-
crement parameters of Egs. (8), (9), (15) and
(16) does not describe the stress-dilatancy be-
havior of soils in three-dimensional stresses
universally(e. g. Nakai and Matsuoka, 1983a;
Nakai et al., 1986).

des

Fig. 4. Plastic strain increment parame-
ters (degyp™? and dygup*?) represented
in plastic principal strain increment
space
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ELASTOPLASTIC MODEL FOR CLAY 85

On the other hand, according to the ex-
tended concept of the “Spatially Mobilized
Plane” (SMP* concept) from which the quan-
tity ¢;; is derived, various shear test results
under three different principal stresses can be
uniquely arranged in terms of the relation
between the stress ratio X=tg/ty=7gup/0sup
and the strain increment ratio degyp*?|d7sup*?
(Nakai and Matsuoka, 1980, 1983 a). Here,
the stresses ty=oggyp and fg=rgyp are given
by Egs.(5) and (6), and the strain incre-
ments degyp*? and dygyp*? are the normal
and parallel components of the plastic princi-

—
pal strain increment vector, de¢;?= (de,?, de,?,
des?), to the SMP respectively (see Fig.4)
and are expressed as follows :

degyp*?=de,Pa,+de,Pa,+dePa, an
d7sup™*?
_/ (de,Pa,—desPay)?
+ (deyPay—deya,)*+ (degPa; —de,Pay)?
(18)

Therefore, in the present study, to deter-
mine a yield function the following stress
ratio-plastic strain increment ratio relation
is assumed, because only the component
de 74T satisfies the associated flow rule:

XfX

Y="——-4Y; a

in which
XEZS/tN and YEdsSMP*p(AF)/dTSMP*p(AF)

In Eq. (19), X, and Y, represent the stress
ratio at failure, (¢g/ty)s, and the plastic
strain increment ratio at failure, (degyp™?4P/
dysup™?4") ;. Now, we assume that the crit-
ical state condition in three-dimensional
stresses is determined by the following
Matsuoka-Nakai failure criterion (SMP fail-
ure criterion) (Matsuoka and Nakai, 1974,

1977).
ng(ﬁ) E(M) =const. (20)
En/y Osup/ f
or
-Ji]ﬁzconst. @D
J

Then, if it is assumed that at any critical
state condition under a triaxial compression

(6,>0,=0;) a soil element undergoing shear
distortion deforms without further change in
plastic volumetric strain, the stress ratio X,
and plastic strain increment ratio Y, at fail-
ure, 1.e. at the critical state, are expressed
as follows by the major-minor principal stress
ratio at failure under triaxial compression,
R, : (see Appendix 1)

X=Y2(VR-/%) @

1—-+/R;
Y.= S
=TT (R, 40.5) @)
1+Sin¢,(comp.)

R o™

= 2 f(comp.)ul—Sin(ﬁ,(comp.)
Throughout this paper, subscripts f, (comp.)
and (ext.) denote the values at failure con-
dition, at triaxial compression condition and
at triaxial extension condition, respectively.
Fig.5 shows the stress ratio-plastic strain
increment ratio relationship of Eq.(19),
where X;=0.63, Y,=—0.26 and a=0.7 are
the values determined for the Fujinomori
clay which will be described later. As seen
from this figure, the parameter « denotes
the linear gradient of the line, and the ordi-

nate intercept M* is expressed as

M*=X;+a-Y; (25)
If it is assumed that the directions of the
principal axes of #;; coincide with those of

the plastic principal strain increments and
that the associated flow rule holds in the #;;-

20

;

o ls o Zsw
X=g=

§

X
y=2 X

+Yi a=07

-

Fig. 5. Proposed relation between
stress ratio (¢fg/ty) and plastic
strain increment ratio
(—degyp™? 4 [dy gp*? (4F))
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86 ) NAKAI AND MATSUOKA

space, the following normality condition is
obtained.
dty-de AN -dty de,P A0 +dty- deg? AT

=dty desyp*? 4D +dtg-dygyp*? AP

=0 (26)
Solving the differential equation which is
derived by combining Eqgs. (19) and (26), we
can obtain

lntN-l-l i P d- af)
~1ntN1—O (a=x1) (27 a)
lntN—I-]\};* Inty;=0 (a=1) (27b)
where M* is given by Eq. (25), and £y, is

the value of #y at z3=0.

Now, we regard the plastic volumetric
strain ¢,? as the strain hardening parameter
and assumed that &,? can be given by the
following equation under a constant stress
ratio condition (e.g. isotropic consolidation
and K,-consolidation) in the same manner
as the Cam-clay model.

A—k ty [ A—k p)
P— = 4
& 1+eoln tNO\ 1+e " Po 28

Here, p is the effective mean principal stress,
e, is the intial void ratio at z3=0 and 3=
tyo(=po), A is the compression index(=0. 434
C,) and & is the swelling index(=0. 434 C,).
Therefore, from Eqgs. (27) and (28), we can
eventually obtain the following yield func-

tion.
. /{'—/i: tN - X
/= 1+eo[ln tno + 1— jJ
&?=0 (axl (29 a)
A—k ty X _ _
f= 1_*_\%Dn fre —I—M*]—avf’—() (a=1)
(29b)

Here, the yield function at =1, Eq. (29b),
‘is the same as that in the previous paper
(Nakai and Mihara, 1984), which is derived
by applying the quantity #;; to the original
Cam-clay model (Schofield and Wroth, 1968)
or Ohta’s model (Ohta, 1971).
2) Determination of de;?4F)

If the yield function f mentioned above is
given, the plastic strain increment which
satisfies the associated flow rule, de ;74P is

calculated by using Eq. (11). We will herein
mention how to determine the proportionali-
ty constant 4 in Eq. (11), which represents
the magnitude of strain hardening.

Since the yield function f is given in the
form of f=f(t;; ai, &,2)=f(0:5 &,2)=0, the
condition of consistency is expressed as
of aeu
Be,? Oep®
Here, from Egs. (10), (11) and (12), de;? is
given by

=21 af o+l gersden?=0  (30)

dez] ——.Aaaf 65" K. <dtN> (31)

so that by combining Egs. (30) and (31), the
proportionality constant 4 is expressed as

of 02 0

of mn
A= — aa“d 0t afvpva‘?m 3 If,§@
0f 0o Of
8evp aem” Otk;
%%gzdaz,—zz><dtN>
e (32)
Otrr

See Appendix 2 about the concrete forms of
the derivatives 0f/0¢;;, 0f]de,?, 0,7/ de;;? and
0f] 00 ;.
3) Determination of de;;?7?

Under a constant stress ratio, the plastic
volumetric strain increment de,? are given by
the following equation from Eq. (28).

A—k <dp> A—r {dtyy
I+e, p  1+4e, ty

(since dp/p=dty/ty when stress ratio is
constant)

de,f = (33)

Now, the current stress condition is consid-
ered to be at point A on the yield surface
fin Fig.6. It is then assumed that the plas-
tic volumetric strain increment compressive
isotropically de,2U® is ty/ty, of the plastic
volumetric strain increment de,? given by

Eq. (33)

A—k {dtyy ty

de.pUC) —
Y 1+e, ty  tm

(34

where ¢y, is the value of the intersection of
the current yield surface with the #y-axis
(point P in Fig.6). By evaluating de,PY9
in such a way, for example, under a constant
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ELASTOPLASTIC MODEL FOR CLAY 87

stress ratio the ratio de, 79 :de, P47 s ex-
pressed as ty/ty, : (1—ty/ty), and the rela-
tive proportion of de¢, 279 decreases with in-
crease in the stress ratio. As the result, we
can describe properly the stress-strain behav-
ior of clay under various constant stress ra-
tios that though there is a unique linear re-
lation between ¢, and In p (In #y), the shear
strain becomes large as the stress ratio in-
creases.

From Eq. (34), we give the plastic strain
increment compressive isotropically, de;;?Y9,
under the general stress condition in the
forms of

de”pam:%i. i—’f Kdiyy  ty
+e, iy I

=94, K¢t (35)
so that the coefficient K is
K:l—lf._l_. 7% (36)

l4e, tn tn
The ratio zy/ty, is expressed by the follow-
ing equation from Eq. (27) '

ty X |wume

- _|1—<1 )i (@x1)
(37 a)

v —-X _

- —exp(M*> (=1 37b)

Here, since the stress parameter Zy is given
by Eq. (5),, the increment dzy is expressed
as follows by use of stress increment tensor
doi;

o35
_ Oty _ o\ J,

4) Complete form of the constitutive model
The elastic strain increment tensor de;;¢ is
given by use of generalized Hooke’s law.

1+v, v
dsu‘e:"fddw-fee

where Young’s modulus E, is expressed in
terms of the swelling index & and Poisson’s
ratio v, as

PO (G TPICET TS

doy, (38)

d(fkk'aij (39)

Therefore, the total strain increment tensor
de;; is given by the following form as the

drdle

(dE&ID, ar i)

P
, ty,dESHe

Fig. 6. Proposed yield surface f repre-
sented in (Zy, ) space and direction
of plastic strain increment which
-satisfies associated flow rule in #,;-
space

summation of de;? in Egs. (10) to (12) and
de;;® in Eq. (39).
dejj=de;P+deyy®
=de; P4 4 de; PIO fdeyf (41)

5) Characteristics of the constitutive model

Firstly, let us explain the development of
strain under various stress paths by using
Fig.6. Fig.6 shows the direction of plastic
strain increment which satisfies the associated
flow rule by a vector in the (degyp*?, dysyp™?)
space, together with the yield surface f in
the (zy, ts5) space.

(i) If the stress condition lies inside the

current yield surface or moves from point
A to region I(f<0 or df=<0) :
dejj=de;)* (42)
(ii) If the stress condition moves from
point A to region II(f=0, df>0 and diy=
0:
de;y=de; P47 L-de; s (43)
(since de;#=de; 4P when dty=<0)

(iii) If the stress condition moves from
point A to region III(f=0, df>0 and d¢y>
0 :

daijzdeijp(AF) +d€ijp(1'0) +d5ije (44)
Dividing the plastic strain increment into two
components at region III in such a way, we
can describe the stress path dependency of
the direction of plastic strain increment.

Now then, though the proportionality con-
stant 4 of Eq. (32) is usually positive under
the stress paths such as ¢,=const., ¢,=
const., gg=const. and R=g¢,/¢;=const., there
happens that A becomes negative according
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88 NAKAI AND MATSUOKA

to the stress path. We will show in Appen-
dix 3 how to formulate the model in such
a case.

Fig.7 shows the yield surface of the pro-
posed model for the Fujinomori clay in the
(p, @) space, in the same fashion to specify
the Cam-clay model. The upper half indi-
cates the one in triaxial compression, and
the lower half the one in triaxial extension.
The yield surface is not symmetric with re-
spect to the p-axis, though the yield surface
of the Cam-clay model is symmetric. Al-
though the vectors in this figure indicate the
directions of the plastic strain increment vec-
tors satisfying the associated flow rule,

i ~— direction of déip(AF)
/’/",/’ comp,

gt $=0

0] . p,dey

‘N\\‘\ ext.

Fig. 7. Proposed yield surface f
"~ represented in (p, @) space and
directions of plastic strain in-
crement which satisfies asso-
ciated flow rule in ¢;;-space

8:15°

-— direction of G€f

T3
6:240"

2
8:120"

P=const.plane

Fig. 8. Proposed yield surface re-
presented on octahedral plane
and directions of plastic strain
increment

E—y
de;P4F) it should be noticed that the vectors

are not normal to the yield surface. This
is because in the present model the associated
flow rule holds not in the stress space such as
(#, @) but in the #;;-space.

Fig. 8 shows the yield surface on the octa-
hedral plane in the principal stress space for
two cases of R=(0,/03) (eomp.) =(01/03) (exs.) =2
and 3.5. The shape of the yield surface on
the octahedral plane is in agreement with the
Matsuoka-Nakai criterion (SMP criterion)
represented by Eq. (20) or (21). In this fig-
ure, the vectors indicate the directions of

—
the plastic strain increment vectors de;? on

the octahedral plane, i.e., direction of c_l—;;p,
under the stress conditions of #=0°, 15°, 30°,
45° and 60°, where # denotes the angle from
the ¢,-axis on the octahedral plane. Since

—_
the parallel component of de?U? to the oc-
tahedral plane is always zero, the direction

— —
of des? coincides with that of de 24P,  As
is seen from this figure, under the three
different principal stresses (§#=15°, 30°, 45°)
the direction of each vector deviates from
that of the corresponding deviatoric stress
vector, i.e. radial direction, with a definite
trend as the stress ratio increases. It is also
noticed that its direction is not normal to the
yield surface in the same manner as Fig.7
and is between the radial direction and the
direction normal to the yield surface (direc-
tion of broken lines). This tendency pre-
dicted by the proposed model corresponds to
that of many true triaxial test results on
clay (e.g. Youg and Mckyes, 1971 ; Lade and
Musante, 1978 ; Nakai et al., 1986).

METHODS TO DETERMINE SOIL PA-
RAMETERS

The fundamental soil parameters of the
proposed model are the same as those of the
Cam-clay model (2, & and ¢’(comp.)) plus a
parameter which is the linear gradient «
in Fig.5. Since.the parameters 1,x and
&' (comp.) are determined from the e-In p re-
lationship in a consolidation test and the
strength of a conventional triaxial compres-

NII-Electronic Library Service



ELASTOPLASTIC MODEL FOR CLAY 89

sion test, in the same manner as the Cam-
clay model, we will discuss the method to
determine the parameter a.

(1) Method to determine from undrained
test

The elastic volumetric strain ¢,¢ is given by

o= ieo In <-§0-> (45)
and the plastic volumetric strain is given by
Eq. 29). Here, by considering the un-
drained condition (e,=¢,t+¢,7=0), the ratio
of the mean principal stress at criterial state,
P, to that at initial isotropic condition, p,,
(see Fig.9) in undrained triaxial test is ex-

0 Pe po P

Fig. 9. Explanation of p, and p, in
undrained triaxial test

: £ =01 8 £i=02

[ m— tij-clay

L = tj=cly
3 ——=— Cam-~clay{crig.}

| == Cam-cby(orig.)_-
l _____ ¢ (modt)
——— < {modit) ‘ ,
ot e b . | 3l 1z ] CENS T Y & T T X
g 3 P a5 %% B P W 45°
(@) £a=0.1 (b) £/2=0.2
07 o =06
[ £y =03

7/ o i =07
/ =07 04 F/ P
//////awﬁ :ﬂ&iyzﬁ:f;’{///

£i=04
t-clay A ——— tjj~clay
o ———~ Cam-clay (orig) —| 04 ~e——= Cam-clay (orig.) _.|
R b il T s (medif)
0 L P ORI L 0. C UL W ORI WO S S PR
3 P w0 45° 30° E A 45"
(©) £/2=0.3 @ x/2=0.4

Fig. 10. Analytical relation between ratio
DP./pPo and internal friction angle ¢’
in undrained triaxial test

presses as follows :

T—i.:.:[(xf%l)-ll——(l—-w)

X
M* |

a/(l—a)jl(l-(t/i))

(46)

where on obtaining this form, the following
relation is used,
p=ty (X?+1) 47

Fig. 10 shows the relationship between p./p,
and ¢’ obtained from Eq. (46) for various
values of £/4 and @. Here, analytical results
by the original and modified Cam-clay models
are also drawn with the broken lines and the
dash-dotted lines, respectively. Thus, we
can estimate the value of a with reference
to Eq. (46) and/or Fig. 10.

(2) Method to determine from K,-value

Fig.11 shows the predicted variations of
K,-value in terms of the relation between
K, and ¢’ for various values of a and «/A.
In calculation the Poisson ratio v, is assumed
to be 0.0, since the elastic shear strain is
relatively small. The broken lines in this
figure indicate Jaky’s empirical expression,
K,=1-—sin ¢’. We can therefore estimate «
from K, -value using this figure. On the
other hand, if we determine a in other ways,

' 35° 40°

(© a=0.8
Analytical relation between K-

Fig. 11.
value and internal friction angle ¢’
in Kj,-consolidation test
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we can predict K,-value from this figure.

(3) Other methods

As is seen in Figs. 10 and 11, the value of
« usually lies between about 0.6 and 0.8.
Therefore, when any element test is per-
formed, by assuming the proper value of «
and fitting the predicted stress-strain curve to
the observed values, the parameter a can be
estimated.

VERIFICATION OF PROPOSED MODEL

Saturated remoulded normally consolidated
Fujinomori clay (F-clay) was used in the ex-
periments. Physical properties of the Fuji-
nomori clay are as follows : the liquid limit
w,=44.7%, the plastic limit w,=24.7% and
the specific gravity G,=2.65. The specimens
were prepared by one-dimensionally consol-
idating the clay mixed with deaired water
under a pressure of 49kN/m? and forming
this consolidated clay in the shape of cylin-
ders of 3.5cm in diameter and 8cm in
height. The initial water content of the
specimens under this condition was approxi-
mately 40%. Tests were performed under
various stress paths in triaxial compression
and extention conditions. In the undrained
shear tests, a back pressure of 98 kN/m? was
applied. All the tests except for an isotropic
consolidation test were performed by means
of the strain controlled method at a sufficient-
ly low speed of axial strain rate (§,=5.5x
107¢/min). Although only the verifications
by the triaxial compression and extention
tests are shown in the present paper, the
verifications by the true triaxial tests are
shown in another paper (Nakai et al., 1986).

The values of soil parameters of Fujino-
mori clay are listed in Table 1. Here, 2/
(1+e¢,) and @’ (comp.) are determined from a

Table 1. Values of soil parameters for
clay used in analysis

/L +ey ’ 5. 08x 10-2

#/(1+ep) ‘ 1.12x 1072
¢ ccompn.) ; 33.7°

« 0.7

v 0.0

consolidation test and a conventional triaxial
compression test, respectively. Since it is
difficult to determine the swelling index «
accurately from the unloading and/or reload-
ing e-In p curve of a consolidation test, &/
(1+e¢,) is determined from the values of 2
and ¢’ comp.) and Karube’s empirical relation

(Karube, 1975) given by
1—f_ M
A 1.75

where M is gq/p at the critical state and is
expressed as

(48)

M= 6Sin¢/(comp.) (49)

3—sin ¢/(comp.)
The Poisson ratio v, is assumed to be 0.0,
since the elastic shear strain is relatively
small. The value of & is determined by con-
sidering that the stress-strain curve in un-
drained triaxial compression test predicted by
the proposed model is approximately the same
as that predicted by the original Cam-clay
model.

Figs. 12 and 13 show the analytical stress-
strain curves and the observed values(dots)
in the constant mean principal stress tests
(6, =196 kN/m?), the constant minor princi-
pal stress tests(g;=196 kN/m?) and the con-
stant major principal stress tests(g,=196 kN/
m?) under triaxial compression and extention
conditions respectively, in terms of the rela-
tion among major-minor principal stress ratio
0./03, major principal strain ¢; and volumet-
ric strain ¢,. Here, the solid curves repre-

O] =con o

st, a , —

Sy 5| o

b]O 3 % Oz T ~T == Comp, |
:

p. | e
— S O =196 kN/m?

—
= o o3 =196 kiW/m2 -
Ty=const.
3 & Oy =196 kN/m?
e A A DD 0
y V__”JQ___T;_"_E____AﬂlQ
o oj=const, €0h) )
)
Uy D o . Cipy=const.
Ol —=%90d0000 |4 | =
Q*—% e 4 &
—tij-clay Hl ooy ;
=R S —
——Cam- " —t ]
am-clay(orig.) Symconst.
8

Fig. 12. Major principal strain vs. prin-
cipal stress ratio and volumetric
strain in triaxial compression tests
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® O =196 kN/m2
T m oy =196 kN/MZ T

A O =196 kN/m?
0 15

aaas 5 1
- _403=§0ns‘r, €10%)

< — ey 2
® G=const,
v

e 4

r=const. 6

~~-Cam-claylorig) 8
~

€4(%o)

.~ 10

Fig. 13. Major principal strain vs.
principal stress ratio and vol-
umetric strain in triaxial
extension tests

——comp. /,//
10l- TToext s _¢s -

/

/

6§=const v
;

CTm=const.\/'

(comp.aext) ?

e

L , ]
0 05 10 N 15 20
tno
Fig. 14. Stress paths of o, =const,,

o;=const. and o;=const. tests
under triaxial compression and
extension conditions represent-
ed in (ty, ts) space

sent the results calculated by the proposed
model(z;;-clay model) and the broken curves
that by the original Cam-clay model. In
Fig.14 are drawn the stress paths in these
six shear tests, in the space of (Zy, tg)
which are the stress parameters of the #;;-
model, where ty, denotes the value of zy at
the initial condition. As is shown in this
figure, dty<0 under the stress conditions of
o, =const. and ¢;=const., and dty>0 under
the stress conditions of g¢;=const. There-
fore, though the plastic strain calculated by
the proposed model is all due to the compo-
nent satisfying the associated flow rule in
on=const. and o¢,=const. tests, the plastic
strain is given by the summation of the two

components(one satifying the associated flow
rule and the other compressive isotropically)
in gy=const. test. It is seen in Fig.12 that
for example ¢; in ¢z=const. test calculated
by the Cam-clay model is larger than that by
the proposed model and the observedvalues.
This difference of ¢; between the two models
depends mainly on whether the plastic strain
increment is divided into two components,
dey#4P and de#79, or not. In addition,
the stress-strain curves by the Cam-clay
model in Fig. 13 overestimate the strength
of clay. According to the Cam-clay model,
the predicted stress ratio at failure in triaxial
extension, (0,/63)s(ext.)> is 16.0 and is much
larger than that under triaxial compression,
(61/09) ftcomp) =3.5.  This is because the ex-
tended Mises failure criterion is used in the
Cam-clay model. On the other hand, the
values of (g,/0s)r in both triaxial compression
and extension predicted by the proposed mod-
el are identical and agree with the observed
values. .

Fig. 15 shows the analytical stress-strain
curves under plane strain condition calculated
by the two models, and Fig.16 shows the
analytical relation between b= (¢;—a3)/(c,—
g;) and ¢,/o; under plane strain condition.
Here, the value of & represents the relative
magnitude of the intermediate principal stress
and is 0.0 for triaxial compression condition
and 1.0 for triaxial extension condition. As
is seen from these figures, the Cam-clay mod-
el gives the excessive strength ((o,/0;),=

=

O+
Cj-const. 1" ™3 const. -
{ / S / s const, <

= O3=const.

~—t—nplane strain--—-—

€ Clo)
10 15 °
e e —

Opn=const| 2

e R 4
i <

I . 3
. . \/03 const, 6 =
tij—clay W
=
[ ———= Cam-claytorig.) ~= 8

] —=

Fig. 15. Calculated major principal
strain vs.principal stress ratio
and volumetric strain in plane
strain tests
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ext)10 —
plane strain —— tyj-clay
L ——-- Cam-clay(orig.) |
05 Siconst. -
516

cyconst,
(compiy : . :
1 2 3 o 4 "8 9
(=3
Fig. 16. Calculated variations of b-

value in plane strain tests

8.4) under plane strain condition in the same
manner as under triaxial extension condition,
and the analytical values of & converge to
0.5. However, on the basis of the proposed
model, the analytical values of (o,/65); and
b; under plane strain condition are estimated
as (g:/0;);=4.24 and b,=0.30~0.31 and cor-
respond to the tendency of many reported
experimental results (e.g. Hambly, 1972;
Vaid and Campanella, 1974). As mentioned
above, the strength (¢,/0s), predicted by the
proposed model has the same value under
triaxial compression and extension conditions
and has a little higher value under plane
strain condition. This is because we use the
Matsuoka-Nakai failure criterion(SMP crite-
rion) in Eq. (20) or (21) whose shape is re-
presented as a curve circumscribing the dis-
torted hexagon of Mohr-Coulomb failure cri-
terion on the octahedral plane in principal
stress space as shown in Fig. 8.

(stress contr)
(strain contr)

Fig. 17. Mean principal stress vs.
volumetric strain in isotropic
and anisotropic consolidation
tests under triaxial compres-
sion and extension conditions

principal stress ratio ¢,/gs.

1
Re2 5 R=2
& 3

5
€ %)

(a) triaxial compression

10 T
Rt ) ext.
:,\\E B2 o R=1
5 . 1R
5k o “A‘ —
e
5' A“ 1
Z |
° e © 5

(b) triaxial extension

Fig. 18. Major principal strain
vs. volumetric strain in iso-
tropic and anisotropic con-
solidation tests

Figs. 17 and 18 show the comparisons be-
tween the observed values(dots) and the ana-
lytical results by the proposed model(solid

lines) in the isotropic and anisotropic consol-

idation tests under triaxial compression and
extension conditions, where R denotes the
Fig. 17 shows the
e,~In(p/ po) relation(p,=initial mean principal
stress of each consolidation test), and Fig. 18
the ¢,—e¢, relation. Here, only an isotropic
consolidation test represented by the open
circle with dot is performed by means of the
ordinary stress controlled method, the other
tests are performed by means of the strain
controlled method using an automatically
controlled apparatus. It is apparent from
these figure that the proposed model explains
the observed stress-strain behavior in various
consolidation tests under triaxial compression
and extension conditions.

In Figs.19(2) and (b) arranged are the ob-
served values in these various shear and con-
solidation tests under triaxial compression
and extension conditions, in terms of the re-
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o 2
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O O3 = 196 kN/m2 o A
go s
- . e
5 O = 186kN/m %o P
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(a) triaxial compression

4
gl
3
w ‘,' :
a
ext, wu®  ea
i 3 -1 oA
u
. 13
® Om=196kN/m?2 -
P A
. ® A
® O3 =196kN/m2 . <
- 5 2 u . .I A
AC) = »
1 =196kN/m LR .
= ]
®R=1,283 u .
i " ° ®
J ; J
0 g W9 25
dey

(b) triaxial extension
Fig. 19. Observed relation between
principal stress ratio (¢i/0;) and
principal strain increment ratio
(—de;/dey) in various shear and
consolidation tests

lation between ¢,/0; and —de;/de;. Figs. 20
(a) and (b) show the corresponding analytical
results by the proposed model(solid lines) and
the Cam-clay model (broken lines). Cam-
paring the observed values in Fig. 19 with the
analytical results in Fig. 20, we can find that
the proposed model can describe the depend-
ence of the observed stress ratio-strain in-
crement ratio relation on the stress paths un-
der triaxial compression and extention con-
ditions, though the Cam-clay model does not
describe such a tendency of the observed val-
ues. Moreover, it is seen from Fig.20(a)
that the value of K, predicted by the pro-
posed model is appropriate(K,=0.47), while
the value by the Cam-clay model is too large
(Ky,=0.84) for a normally consolidated clay.
To clarify the difference between these two
model, the analytical stress ratio-plastic
strain increment ratio relations are shown in

O 4
O3

comp.
3
tij-clay Rzconst.
..... Cam-ctay

(orig.) (Ko=047)
2

Ty = ¢4
Ty=const. ) = const.

4
(Ko=084)—4
L A 1
=10 -05 0 05 10

| S

ext.

~—— tij-clay

------ Cam<lay 2
{orig)

]
20

(b) triaxial extension
Fig. 20. Calculated relation between
principal stress ratio (o//¢;) and
principal strain increment ratio
(—degz/de;) in various shear and
consolidation tests

Figs.21(a) and (b) in terms of g¢/p vs.
—de,P/des? by using the stress parameters and
plastic strain increment parameters employed
in the Cam-clay model(see Egs. (8), (9), (15)
and (16)). According to the Cam~clay mod-
el, all the plastic strain increments satisfy
the same relation given by Eq. (14), regard-
less of the stress paths(e.g. ¢, =const., g;=
const., ¢;=const. and R=const. paths). On
the other hand, the plastic strain increment
ratio based on the proposed model changes
depending on the stress paths, since the plas-
tic strain increment is given as the summa-
tion of de;#“P and de;#Y%. To be more
precise, though the relations between stress
ratio and plastic strain increment ratio are
the same under the stress path of dzy <0 such
as o,=const. and g¢,=const. (since de;;P=
dey #4470, those are different under the stress
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15
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comp. a
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t // O =const, dos
(33=CO|'TS.
///
______ dE'f,’_ _a
~ @»M T
L 1. 1 1
-20 Y =10 - 0
5 o dEp 0S
d€q
(a) triaxial compression
-5
AM
ext. Sl a
AP
v T.o
R=const. ——
/-”"/' - Om=const,

Oy =const, o5

-z dEBzM_ q
9eb
25 75 ‘ ; 0
- -1 10 =05
© def
def

(b) triaxial extension
Fig. 21. Analytical relation between
stress ratio (g/p) and plastic
strain inerement ratio (—de?/
de;?) by t;;-clay model and origi-
nal Cam-clay model

path of diy>0 such as o;=const. and R=
const. (since de;?=de; ;747 +de;#719). It is
also seen in Figs.21(a) and (b) that the re-
lations between ¢/p and de,P/dss? by the
Cam-clay model are the same regardless not
only of the stress paths but also of the stress
conditions (e. g. triaxial compresion and ex-
tension conditions), but those by the proposed
model are different. These differences in
plastic strain increment ratio depending on
the stress paths and stress conditions calcu-
lated by the proposed model incorporate with
many experimental results reported(e.g. Le-
win and Burland, 1970 ; Ohmaki, 1982).
Now then, it is due to the influence of the
elastic component that the Cam-clay model
describes a little stress path dependency of
total strain increment ratios in Fig. 20.

Fig. 22 shows the effective stress paths in

3004 /
N
f comp. ,,é “
~ & |
;.? o OO ‘
—~ P 0 o
Foot— TS — ]
Z o ~—— Cam-clay (orig)
=~ I (Y i
ks & ® i
- /) ext. ; S
3 A
100§~/ f 5 - W&;o/g"z
/ J sl
/‘/ -1608/p=138)
t1. (R=160.°P=120 7
_/ . / - e — -"}
100

200
OF (/m2)
Fig. 22. Effective stress paths in

undrained triaxial compres-
sion and extension tests

10
ol
|Q' o © o ‘/co:gnp
________ ~compaext, T
oo ® o0 d
05 * ~ext.
undrained 2 Z?(Tp'
tj ~clay
——— Cam-clay (orig.)
0 1 1
5 10 €4 ) 15

Fig. 23. Stress-strain relationship
in undrained triaxial compres-
sion and extension tests

undrained triaxial compression and extension
tests, in terms of the relation between axial
stress g, and radial stress ¢,. The open and
solid dots represent the observed values, and
the solid and broken curves represent the
analytical results by the proposed model and
the original Cam-clay model respectively.
Here, though the failure lines in the pro-
posed model and the Cam-clay model are the
same (R=3.5, ¢/p=1.36) under triaxial com-
pression condition, the failure line in the
proposed model (R=3.5, ¢/p=0.94) is differ-
ent from that in the Cam-clay model (R=
16.0, ¢/p=1.36) under triaxial extension
condition. Fig.23 shows the analytical un-
drained stress-strain curves by the both mod-
els and the observed values. Here, g=0¢,—
63 €4=02/3) (e;—¢;3) and p, is the initial con-
fining pressure(p,=196 kN/m?). It is seen
from Figs.22 and 23 that though there is no
significant difference between the analytical
results by the both models under triaxial
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compression condition, the proposed model
can describe the differences of the undrained
strength and the deformation behavior be-
tween triaxial compression and extension con-
ditions, which are not represented by the
Cam-clay model. Now, as is seen in e.g.
Figs.12, 13 and 15 described before, though
the principal strains and the shear strains to
failure predicted by the proposed model are
infinite under triaxial compression condition,
those are finite under such stress condition as
triaxial extension and plane strain except for
triaxial compression condition. This tenden-
cy is also shown in the observed values.
Therefore, the undrained stress-strain curve
after failure under triaxial extension by the
proposed model in Fig.23 is drawn as a per-
fect plastic material without further volume
change.

Figs. 25(a) to (d) show the observed values
(dots) and the analytical stress-strain curves
by the proposed model under the various
stress paths from point A to point G in Fig.
24(paths AEFG, ABFG, ACFG and ADFG),
arranged with respect to the relations be-
tween ¢,/0; and (¢, and &;) and relations be-
tween ¢, and ¢, Here, the stress conditions
(64, 0,) of points A to F in Fig.24 are as
follows : A=(196, 196), B=(441, 441), C=
(588, 588), D= (784, 784), E=(294, 147) and
F=(882, 441) in kN/m?2. It is seen from
these figures that the proposed model de-

wo- / =196 (kN/m?)

0 206460 800
@'(kN/n&?o

Fig. 24. Stress paths of triaxial
compression tests (paths AE-
FG, ABFG, ACFG and ADFG)
represented in (o, o,) space

scribes the observed stress-strain behavior of
clay under the various stress paths combin-
ing shear and consolidation as well.

Path AEFG ! |

(a)

(ed
) Path ADFG i
3 | ,5;%/__“ R —
% ’ oc’ooou }
5 1 3 ) wls 29
€5 Cl) o ! € @)
; 2\\ | i
&
€, %) \
(dd

Fig. 25. Stress-strain curves under
various stress paths from points
A to G in Fig.24
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CONCLUSIONS

The main results of this paper are sum-
marized as follows :

(1) A simple and general elastoplastic
constitutive model for clay is proposed that
describes precisely the stress-strain behavior
of clay under various stress paths in three-
dimensional stresses. In this model, the in-
fluence of the intermediate principal stress
are considered by using the mechanical quan-
tity #;; which is a generalization of the con-
cept of SMP*, and the influence of the stress
path by dividing the plastic strain increment
into the component satisfying the associated
flow rule in the #;;~space and the component
compressive isotropically. Furthermore, its
soil parameters can be easily determined in
the same way as the Cam-clay model, be-
cause only a yield function and a strain hard-
ening parameter are used in the model.

(2) Various kinds of soil element. tests
of clay under triaxial compression, triaxial
extension and plane strain conditions are ana-
lyzed using the proposed model. Then the
validities of the the model are confirmed by
comparing the analytical results with the ob-
served values and the results calculated by
the Cam-clay model. The proposed model
explains precisely the observed stress-strain
behavior in g;=const., ¢;=const., g, =const.,
oi/os=const. and undrained tests under
triaxial compression and extension conditions
and predicts adequately the stress-strain
behavior under plane strain condition.

Although in the present paper the validities
of the proposed model are checked by the
test results under triaxial compression and
extension conditions only, the comparisons
between the analytical results and the ob-
served values under three different principal
stresses conditions are shown in another pa-

per(Nakai et al., 1986).
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APPENDIX 1

The concrete derivations of the stress ratio
X and plastic strain increment ratio Y, at
failure in Egs. (22) and (23) are given be-
low :

Under a triaxial compression condition(¢,>
g;=d; and de,>de,=de;) the stress ratio,
X=t4/ty, and the plastic strain increment
ratio, Y =degyp*?[dysur*?, are expressed as

follows from Egs. (1), (7), (17) and (18):

ts_ N2 Ja. /o,
135 3 O3 J; (AD
Y = deSMP*”: de,Pa;+2de,Pay
T drsue™? V2 (de,Pay—de,Pay)
o, [ des?
1 2‘/?_1.<__3_>
_ + o3 \de,? (A2)

vl o=@
o, \de.?
Since at the critical state, i.e. at failure, in
triaxial compression the plastic volumetric
strain increment de,? is zero, the plastic prin-
cipal strain increment ratio des?/de,? is

def_i(devp_l)_ 1

de® 2\ de,P Y (A3)

Therefore, X, and Y, are expressed using
the principal stress ratio at failure, R,=
(‘71/0'3>f(comp-)s as follows

___1-vR,
Yr= V2 (/R;+0.5) @)

APPENDIX 2

The concrete forms of the derivatives af]
0ty 0f]0e,P, 0e,P/0¢;? and 0f/dg;; are ex-
pressed as follows :

(i) Since the yield function fis given as
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a function of ¢y and X, and ¢;; is a symmetri-
cal tensor whose principal axes coincide with
those of ¢,; in direction, 0f/dt;; is calculated
as

of <6f 6tN+af 6X> 0ty

Oty; \0ty 0t,  0X 0t/ Oty
_(Of 0ty Of ’6X>'6dk
‘(azN 9t, TOX ot ) Doy, AY

Here, from Eq (29,
of _A-k 1
atN l+€0 tN <A5)
of A— @
X~ 1+eo' M —(i—a)- X (A®
and from Egs. (5); and (6),,
Oty Oty _ Oty _
8t1 =4a, atz = Qy, ats =as (A7>

ox (1) o 1 oy x

0t, 0t, — 0ty ty 0t ¢ty
- (tray—tsa) ar+ (tias—ta)a; 1

g In
—as: ;X (A8
N

0X/0t, and 9X/dt; are also given in the same
way as Eq. (A 8). Furthermore, since the
principal axes of symmetrical tensors #;; and
g;; coincide in direction, 8#,/d¢;; (k=1,2 and
3) are equal to do,/d0;; and are expressed as
functions of ¢;;. For reference, the forms
of 9t,/at;; (k=1,2 and 3) in the case of o;3=
653=0 such as plane strain and axisymmetric
conditions are shown in Appendix 1 of the

previous paper(Nakai and Mihara, 1984).
(ii) From Eq. (29),
of '
asvp_—l (A9>
(iii) Since e,2=4d;; &%
| Oe,?
ae—“p—5zj (A10)

(iv) Since the terms ty and X in the
yield function of Eq. (29) are also given by
Eqs (5); and (6),, df/do;; is calculated as

o0f _0f 0ty 0f 080X

60'“_ ﬁtN 60'” 0X 80'1‘7
where 0f/9¢y and 3f/0X are given by Eqgs.
(A5) and (A 6), and 90X/dg;; are expressed
as

(A1D

ts

Fig. A1. Proposed yield surface f in
(ty,ts) space and four regions
where developments of strain are
different when stress condition
moves from point A

Jy
o, ()

6(7” adw <A12>
o/
9J,
aO’U 80'” <A13)
APPENDIX 3

The method to formulate the model is
shown here when 4 of Eq (32) is zero or
negative :

From Eq. (32) the condition that 4 is not
positive is expressed as

of 1
ng— Oty
diy = of

e

where 0f/oty, 0f/0X and ty, are given by
Egs. (A 5), (A 6) and (37), respectively, and
on deriving Eq. (A 14) from Eq. (32) the re-
lations of Egs. (36), (A9), (A10) are uti-
lized. If we show the condition of f=0,
df>0 and A=0 in the (zy, tg) space, it is
indicated by the region IV in Fig. Al
Here, it is assumed that only the plastic
strain increment compressive isotropically oc-
curs in region IV

(A14)

dswz’:/l’-

01y
3 (A15)

where A’ is given as follows from the con-

dition of c0n31stency of Eq.(30), and Eq.
(A 15),
, gijd““ of
A =— af : asvp . 6kl = aawdd“ <A16>
a&‘vp aekl” 3
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