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A NEW MECHANICAL QUANTITY FOR SOILS AND ITS
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CONSTITUTIVE MODELS
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ABSTRACT

This paper presents a method to extend an elastoplastic constitutive model valid only in
the triaxial compression condition to one applicable in general stress conditions. A stress—
strain model in three-dimensional stresses was developed on the basis of the extended concept
of the “Spatial Mobilized Plane” (briefly SMP#*). From reconsideration of the concept of
theSMP*, a mechanical quantity to describe uniquely the behavior of soils in three-dimension-
al stresses is obtained. This mechanical quantity ¢;; is a symmetrical tensor whose each
principal value is the product of the corresponding principal stress and the corresponding
direction cosine of the SMP. The mechanical quantity is then applied to the Cam-clay model
as an example. It is checked by various data of drained and undrained shear tests on normally
consolidated clay that the #;; Cam-clay model proposed here describes uniquely the behavior
of soils not only under the triaxial compression condition but also under the triaxial extension
and three different principal stress conditions. Although only the application of #;; to the
Cam-clay model is shown in this paper, #;; is easily applicable to any other elastoplastic
constitutive models for soils.
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were not generally applicable in the stress

INTRODUCTION conditions except for the triaxial compres-
Many constitutive models for soils have sion condition, because these were obtained
been proposed on the basis of the elasto- on the basis of the elastoplastic theories of
plastic theories since Roscoe and his col- the Mises type and the validity of them was
leagues developed the original Cam-clay checked only by the tests under triaxial -
model (Roscoe et al, 1963; Schofield and compression conditions. Since then, the
Wroth, 1968). Most of them, however, models developed for triaxial compression
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MECHANICAL QUANTITY FOR SOILS 83

conditions have often been extended to those
for triaxial extension conditions and/or three
different principal stress conditions by modi-
fying the soil parameters so as to satisfy
Mohr-Coulomb’s criterion of rupture (e.g.,
Roscoe and Burland, 1968), but these at-
tempts do not seem essential.

The “Spatial Mobilized Plane (SMP)” was
proposed as a plane where soil particles were
considered to be most mobilized on the
average in three-dimensional space, and the
behavior of granular materials such as soils
was analyzed after the usefulness of this
plane was noticed (Matsuoka and Nakai,
1974, 1977). Furthermore, by introducing
new amounts of strain increments based on
the SMP, the concept of the SMP was
extented in order to describe the shear be-
havior of soils in three-dimensional stresses
more precisely (Nakai and Matsuoka, 1980,
1983a). Then a constitutive equation for
soils describing the stress-strain behavior
under various stress paths in three-dimension-
al stresses was developed on the basis of
the extended concept of the SMP and was
applied to finite element analyses of soil
foundations (Nakai, 1981 : Nakai and Matsu-
oka, 1983b). In the present paper, by gene-
ralizing the above extented concept of the
SMP, a new mechanical quantity #;; is pre-
sented that can change any constitutive
model formulated in the triaxial compression
condition into one valid in general stress
conditions. As an example, the proposed
mechanical quantity is applied to the Cam-
clay model which is one of the simplest
elastoplastic constitutive equations, and the
validity of the proposed model is confirmed
by experimental results on a normally con-
solidated clay.

DEFINITION OF THE MECHANICAL
QUANTITY ¢,

A stress-strain equation under shear based
on the extended concept of “Spatial Mobi-
lized Plane (SMP)” (named SMP*) was pro-
posed by Nakai and Matsuoka (1980, 1983 a).-
This equation was derived from the condition
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Fig. 1. A soil element and the Spatial
Mobilized Plane (ABC) in the three-
dimensional space

that there exist unique relations between
the shear-normal stress ratio on the SMP
(rsup/0syp) and the amounts of strain in-
crements based on the SMP (degyp* and
dyswp*) under the three-dimensional stress
condition. The “Spatial Mobilized Plane
(SMP)” is the plane ABC in Fig.1, where
I, II and IIl axes represent the directions
to which three principal stresses ¢,, ¢, and
g; are applied, respectively. Since the
values at the points where the SMP inter-
sects these three axes are proportional to
the roots of the respective principal stresses,
the direction cosines (a;, a, and a;) of the
normal to the SMP are expressed as follows
(Matsuoka and Nakai, 1974) ;

_ J; .
a¢~‘/61’}2 (i=1,2,3) (1)

Here J,, J, and J; are the first, second
and third effective stress invariants and ex-
pressed by the following equations using the
three principal stresses.
Ji=0,1+0,40; ,
J2=0105+0:05+040, - (2)
J3=0,004

The normal and shear stresses on the SMP
(osup and 7gyp) are defined as follows.

Osup=01a:*+ 022, +03a,° (3)
Toup=+ (01— 03)%a,2a* + (0, — 03)%asta,’
+ (03—01)%asa,’ (4)

On the other hand, the amounts of strain
increments based on the SMP (degyp* and
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Fig. 2. Amounts of strain increments
(dSSMp* and dTSMP*) in the pl‘iIICi-
pal strain increment space

dysyr®) are, as shown in Fig.2, the normal
J— —>
component ON and parallel component NP

of the principal strain increment 6—1;52;=
(de,, dey, des) to the SMP (Nakai and Matsu-
oka, 1980, 1983 a)

dESMP*:d81a1+d€2a2+d€3a3 ( 5 )
dysur® = v (deja,—deya,)*+ (desas— deyas)®
+ (deaal—dslas)i (6)

Thus, the concept of the SMP* is interpreted
as the theory in which unique relations hold
between the stress parameters given by
Egs. (8) and (4) and the strain increment
parameters given by Egs. (5) and (6).

In the present study, reconsidering of the
concept of SMP* mentioned above, we will
introduce new quantities expressed by the
following equation.

t,=03ay

(1=1,2,3) 7

If Egs. (@) and (4) are rewritten by the
use of quantities #;(i=1,2,3), the normal
and shear stresses (ogup and cgyp) are re-
presented by the following equations in the
forms of the transformation of the quanti-

ties, in the same manner as (degyp* and
dysyr®) in Egs. (5) and (6)

dgyp=tiart+iEsas+1a: =1ty (8)
Toup=+ (12— 1201)*+ (t2a3—13a,)*
+ (Zsa,—t1as) =ts (9)

Therefore, the extended concept of the
Spatial Mobilized Plane (SMP*) implies that

there are unique relations between the nor-
mal and parallel components of #;=(¢;, ¢,

ty) to the SMP and those of E;-:(dai, desy,
dey). Extending this interpretaion, if we
introduce a tensor #;; whose principal values
are t,, t, and t, instead of the stress tensor
0;5 it might be possible to describe uniquely
the behavior of granular materials such as
soils in three-dimensional stresses. Here,.
the principal axes of t;; are assumed to
coincide with those of the stress.

Since the proposed mechanical quantity
t;; is a symmetrical tensor whose principal
values are t,, ¢, and ¢; in Eq. (7), t;; can
also be expressed as

t1y=a1r Opj (10)
where o¢,; is the stress tensor and a; is
the tensor the principal values of which are
given by the direction cosines (a;, a; and
a;) of the SMP in Eq.(1). On the other
hand, Satake (1982) proposed the following

*

“second stress tensor” g¢;; so as to describe
the behavior of granular materials.

®

O'zjz‘é’ﬁﬂzk—l'dkj an

Here ¢, denotes what he called the fabric
tensor of granular materials and is char-
acterized by the frequency distribution of the
interparticle contact angles originated in
microscopic studies (Oda, 1972; Matsuoka,
1974). This was discussed in reference to
the fabric change due to a change in stresses,
so-called induced anisotropy. If we now
assume that ¢;; coincides with a;;7% it is
obvious from Egs.(10) and (11) that #;;

corresponds to ;“. In this case, it is seen
from Eq. (1) that there are the following
relation between the principal values of ¢;;
and the principal stresses,

‘P1:¢2:¢3=1/0_1_:\/5;:1/&; 12)
Eq. (12) shows that the present idea is
qualitatively compatible with the experimen-
tal observation by Oda (1972) that the nor-
mals to the interparticle contacts gradually
concentrate on the average in the direction
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MECHANICAL QUANTITY FOR SOILS 85

of the major principal stress along with the
increase in stress ratio. From the above
discussion, the tensor #;; is considered to be
a mechanical quantity reflecting the induced
anisotropy of such granular materials as soils.

APPLICATION OF ¢;; TO THE CAM-
CLAY MODEL

In this section, the proposed mechanical
quantity #;; will be adapted to the Cam-
clay model as an example of its application
to the elastoplastic theories of soils. First
of all, we assume that the critical state
condition in three-dimensional stresses is
determined by the following failure criterion
based on the SMP (Matsuoka and Nakaij,
1974).

X ;= (Tgup/osup) y=const. a3
Here subscript f denotes the failure condi-
tion. Then, if it is assumed that at any
critical state condition under a triaxial com-
pression a soil element undergoing shear
distortion deforms without further change
in plastic volumetric strain as mentioned in
the Cam-clay model, the stress ratio X, =

(rsup/osup) r and the plastic strain increment
ratio Y ;= (desup™/dysur™) r at the critical state
are expressed as follows by the major-minor
principal stress ratio at failure under triaxial
compression, R;=(0,/03)s (comp.)s
X;=W2/3)- WR~+1/Rp) (14)
Y;=(1—vRp)/{V2 (WR;+0.5} (15)

The above equations are obtained from Egs.
(3 to (6) under the condition that g,=
0, de,P=des? and de,f=de?+deP+de;?=0
at o,Jo;=R;. In this paper superscripts p and e
denote the plastic and elastic components,
respectively. v

The equation of energy dissipation in the
original Cam-clay model was expressed as
follows (Roscoe et al,, 1963; Schofield and
Wroth, 1968),

AW =0,-de,?+0,-dey? +05-des?
=P'd€vp+Q'd€dp

=dWy,=M-p-de,? 16)

Here p=([3)-(0,+0:+0p), g=Q1/v2)-{(g,

—0) +(0s—0)2+(05—0 ) }% . def =de? +
deP+des?, de,?=(V2/3) - {(de?—de?)?+(des?
—de?)2 4+ (des?—de,?)?}V?, M is a soil para-
meter, dW,, is the irrecoverable energy per
unit volume done by the external forces and
dW,, is the energy per unit volume dissi-
pated in the soil skeleton. Now, if it is
assumed that the behavior of soil is funda-
mentally controlled not by the stress g;; but
by the proposed mechanical quantity #;; the
relation corresponding to Eq. (16) is given
as follows by use of the principal values of
Lijs
AW, *=t,-de,P+ty-de,P+t;-de,?
=ty degyp™? +ts- dysup™?
=dWu*=ty (Y dysue™) + Xty drsue™?
=M*-ty-drawe™® M*=X+Yy)
an
From Eq.(17), the {following relation be-
tween the stress ratio and the plastic strain
increment ratio can be obtained.

degup™? t

On the other hand, if we apply the same
idea to the modified Cam-clay model of
Roscoe and Burland (1968), we can obtain
the following relation between the stress
ratio and the plastic strain increment ratio,

which corresponds to de?/de2={M?*—(q]
»2{2(qg/p)} in the modified Cam-clay
model.

degwp™® _ XA —(ts/ta)?
dr sur™? 2(ts/ty)

The broken line with dots and the solid line
in Fig. 3 represent the relations between X=
ts/ty and Y =degyp*?[dysup™? of Egs. (18) and
(19), respectively, where X,=0.63 and Y ;=
—0.26 are the values determined for the
Fujinomori clay which will be described in
the next section.

Next, since the void ratio e of a normally
consolidated clay is determined only by the
current stress condition and is not affected
by the past stress history (Henkel, 1960),
we regard the plastic volumetric strain e,?
as the strain hardening parameter. Then
e,? can be given by the following equation

1Y, (19
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Fig. 3. Proposed relation between the
stress ratio (¢5/¢y) and the plastic

gtrain increment ratio (degyp*?/
d7sup*®)

under a constant stress ratio condition (e.g.,
isotropic consolidation and K,-consolidation),
in the same manner as in the Cam-clay
model.

Svp: /{"‘/fl tN/ l lflnp

1+4e, tNo\ 1+e, Po) (20)
Here p is the effective mean principal stress,
e, is the initial void ratio at #3=0 and ty=
tyo(=po), A is the compression index (=
0.434C,) and £ is the swelling index (=
0.434 Cy).

If it is assumed that the directions of the
principal axes of ¢;; coincide with those
of the plastic principal strain increments and
that the associated flow rule holds in the
space of #;; as shown in Fig. 4, the following
normality condition is obtained.

dt1 M d€1p+dt2 ' d82p+dt3 . d83p
=dty-degyp*?+dts dysyr™®

del
4 o
dct
f=0
t; o€l
t2
de}
Fig. 4. Associated flow rule in the ¢;;
space

=0 21D

Solving the differential equation which is
derived by combining Eq. (18) or (19) with
Eq. (21), and then considering Eq. (20) to
eliminate the integral constant, we can
eventually obtain the following yield func-
tions in terms of #;;.

In the case of the original model:

Ak ty X .
In the case of the modified model:
fe= A— Ii‘rl tN+f 2X-dX J
T+e| X4+2Y - X+X/2
—&,’=0 (X=tg/ty) (23)
From Eq.(22) or (23), the plastic strain
increment tensor de;;? is given as follows,
since the direction of plastic strain increment

is normal to the yield surface in the space
of #;;:

_ 4 0f
dssz-—/l @t“ (24>

A way to calculate 9f]/9¢;; in terms of o;;
is shown in Appendix 1. Here, since the
yield function is given in the form of f(
tip ay &P)=f(0; &)=0, the total dif-
ferential form of the yield function is ex-
pressed as

of 0e?
0e,”  Dey)®
By combmmg Eqgs. (24) and (25), the pro-
portionality constant A is expressed as

df=gLdo+ 2L B e =0 (25)

gif; Lidzj
=57 ve of (26)

aevp 6€klp atkz
The elastic strain increment tensor de;° is
given by use of generalized Hooke’s law
14y
E, ¢ Eidgkk'aij @70

where §;; is the Kronecker delta and E,
is expressed in terms of the swelling index
& and the Poisson’s ratio v, as

=302 ui (L+e))p

Czewe: do g5

(28)

Therefore, the total strain increment tensor
de;; is given by
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de”‘—:dew”-{—da“e (29)

COMPARISON OF ANALYTICAL RE-
SULTS WITH EXPERIMENTAL RE-
SULTS

Saturated remoulded normally consolidated
Fujinomori clay was used in the experi-
ment. Physical properties of the clay are
as follows: the liquid limit w;,=44.7%, the
plastic limit wp=24.7% and- the specific
gravity G,=2.65. The specimens were pre-
pared by one-dimensionally consolidating the
clay mixed with deaired water under a pres-
sure of 49kN/m? and forming this consoli-
dated clay in the shape of cylinders of 3.5
cm in diameter and 8cm in height. The
initial water content of the specimens was
approximately 409%. Six types of shear tests
were performed; constant mean principal
stress tests (¢, =196 kN/m?), constant minor
principal stress tests (0;=196kN/m?) and
undrained tests (initial effective confining
pressure p,=196 kN/m?) under triaxial com-
pression and extension conditions. A back
pressure of 98kN/m? was applied to the
specimens in the undrained shear tests.

All the soil parameters of the Fujinomori
clay are listed in Table 1. Here, 2/Q+
e,) and k[/(1+4+e,) are determined from an
isotropic consolidation test and R;=(g,/
03) flcomp.) 1S determined from a conventional
triaxial compression test in the same manner
as in the Cam-clay model. Then, X, and
Y ; are estimated from Egs. (14) and (15),
and we obtained X,=0.62 and Y ,=-0.26.
The Poisson’s ratio v, is assumed to be 0. 3.
On the other hand, since the original model of
Eq. (22) overpredicted the strain increments
for changes in stress ratio at a low stress
ratio in the same way as the original Cam-

clay model, comparisons are shown here
Table 1. Soil parameters for Fujinomori
clay used in analysis
A/ (L+ep) 5.078 x 1072
£/ (L+eq) 0.694x 1072
Ry 3.5
Ve 0.3

o @ Om=const.
o m O3=const, )
4 a undrained .-~

- SMP
----- Mohr-Coulomb

—-— Mises \

(oF 3

Fig. 5. Critical state condition based on
the SMP on the octahedral plane
between the observed values and the values
predicted by the modified model of Eq. (23).
The model in which #;; is applied to the
Cam-clay model is named “¢; Cam-clay
model” in this paper. The summaries of
the “Cam-clay model (modif.)” and the ¢
t;; Cam-clay model (modif.)” are tabulated

in Appendix 2.

Fig.5 shows the critical state condition
based on the SMP (X,=0.63) and the stress
conditions at failure obtained by the six
shear tests on the octahedral plane. The
open and solid dots denote experimental re-
sults under triaxial compression and exten-
sion conditions respectively. In this figure,
Mohr-Coulomb’s criterion and extended
Mises’s criterion employed in the Cam-clay
model are also described. Although shear
tests under three different principal stresses
are not performed, the criterion based on
the SMP has a good correspondence to the
experimental results on clay by Shibata and
Karube (1965).

Fig.6 shows results of the constant mean
principal stress tests under triaxial compres-
sion and extension conditions with respect
to the relation between ts/ty=rgyp/0sur and
degyp*|dysur®, together with the theoretical
line of Eq. (19). It is seen from this figure
that the both test results are uniquely ar-
ranged in this relation and that Eq. (19) is
appropriate. In Fig.7, these experimental
results and theoretical values are rearranged
with respect to the relation between g¢/p
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s Zawp 1o %= 063

W Oswe ¥=-0.26
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Fig. 6. Relation between Zg/ty and degyp*/

drsyp* in constant mean principal
stress tests

=196 kN/m?2

o comp.
o ext. 0.7

K‘?QO_ olo]
S

tjj Cam-clay (modif.)
—— comp,
———ext,

Camrclay(modit.)
~~~~~~~~ comp. & ext.

I 1 1
-10 -08 -06 ~04_ =02 (0] 02 04
_dey _qgg
dEq , del

Fig. 7. Relation between ¢/p, and de,/dey
’ in the same tests as Fig.6

and de,/deg (de,fldes? in the case of theo-
retical values), according to the Cam-clay
model. The dotted line, which represent
the relation in the modified Cam-clay model,
cannot explain such a difference between
triaxial compression and extension conditions
as is seen in the experimental results and
the theoretical values of Eq. (19).

Fig. 8 compares the observed values (dots)
of the triaxial compression and extension
tests (0,=196kN/m?») with the results
calculated by the #;; Cam-clay model and
the Cam-clay model in terms of the relation
among q/p, e; and ¢,. Though the analyti-
cal curve by the Cam-clay model (dotted
lines) has a good estimate under triaxial
compression conditions, it does not describe
the behavior of clay under triaxial extension
condition well.

On=196 (kN/m?)

o comp,
® ext. .7

e

t;; Cam-ctay (modif.)
—— comp,
———cxt,

Cam-clay(modif.)

e comp, & e xt.

o

10

5
€q(%)

7 €y(%)

Fig. 8. Relation among ¢/p, ¢; and ¢, in
' constant mean principal tests

Figs. 9(a)-(e) show analytical results of
true triaxial tests (0=0°, 15°, 30°, 45° and
60°) by the proposed model with respect to
the relation between the principal stress
ratio o,/o; and the principal strains (e;, e,
and ¢;). Here, 6 represents the angle of
radial stress path from ¢, direction on the
octahedral plane (6=0° and 60° correspond
to the triaxial compression and triaxial ex-
tension conditions respectively). It is ap-
parent from Figs. 9(a)-(e) that the stress
condition at failure in plane strain tests
exists between 0=15° and 0=30°, because
the intermediate principal strain &, is ex-
pansive at 0=15° and is compressive at 0=
30°. Fig.10 shows the direction of the plas-
tic strain increment predicted by the proposed
model as vectors on the octahedral plane.
The directions of the calculated strain in-
crement vectors on the octahedral plane
deviate from those of the corresponding
deviatoric stress vectors with a definite trend
as the stress ratio increases under the three
different principal stresses (6=15° 30° and
45%). This tendency of the analytical results
corresponds to that of the test results on
clay by Yong and Mckeys (1971). The Cam-
clay model, however, cannot explain such
a deviation between the strain increment
and the stress in direction.

Figs.11 and 12 show analytical results by
the proposed model (solid and broken lines)
and the observed values (plots) of triaxial
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(h)
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. dmf'96(kN’m2) Fig. 10. Directions of calculated strain
-10 -5 el 5 10 inerements on the octahedral plane
] in true triaxial tests
%‘ 6=30° 5
SF o
€3 € & 4
4 dogomw B0 0
o~ T ]
(e) bt » e e
3 Jl comp,
2 — O On=196 kN/m2
~— 0 O3 =196 kN/m2
Om= 196 (kNim2) L 5 0 5 %0
-10 5 : 5 0 %’ ~ | ECh) ,
&%) < ;WW“___A =
6 s —— E
5_% 9=45° Son ol Too—=——g
€3 & & 5
4_
(d> Fig. 11. Major principal strain vs. prin-
3 cipal stress ratio and volumetric
2 strain in triaxial compression tests
O =196 kN/m?) 5
-1 5 0 5 0 .
“E(%) . " ‘}.‘;.. -
6 b[b3 /'!:’//.
%% = ext.
g 3 0=60° 2 "l" — ® Om=196 kN/m2 |
€ 1 -~ B O3 =196 kN/m2
ar €
ce) 1 5 e ©
3 '_“L:“‘!!!‘ 2
vinl Eﬁr 4
On=196 (kN/im2) " 2
-10 =5 0 5 10 TR N
€l M 8
Fig. 9. Calculated principal stress ratio 0
vs. principal strains in true triaxial Fig. 12. Major principal strain vs. prin-
tests (6=0°, 15°, 30°, 45° and 60°) cipal stress ratio and volumetric
compression and extension tests, respective- strain in triaxial extension tests
ly, in terms of the relation among 0,/as mean principal stress tests, and the broken
¢, and ¢, The solid curves and circular curves and quadrilateral marks represent the
dots represent the results of the constant results of the constant minor principal stress
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tjj Cdm-clay(modif)
— comp.
—— ext.
Cam-ctay(modif.)

------ comp. gext.
1.0
Ul T o0
0000 W ¥
05 69”0 es o0
undrained
o comp.
e ext.
0 15
€4(%)
Fig. 13. Stress-strain relationship in

undrained triaxial compression
and extension tests

1.0
a._ q .-
p""36 —p——(lgl.
ol undrained
o comp.
0-5F o) ® ext.
QN
Kt bl 1
———ext,
Cam-clay(modif) s
0 i comp, & ext.
05 p_ 10 15
Po
Fig. 14. Effective stress paths in un-

drained triaxial compression and ex-
tension tests

tests. It is obvious that the proposed model
well describes the shear behavior of clay
under the stress path with increase in mean
principal stress as well as under the constant
mean principal stress.

Figs. 13 and 14 show the stress-strain re-
lationship and the effective stress paths of
the undrained shear tests respectively. In
these figures, p, denotes the confining pres-
sure before shear. Analytical results (solid
and broken lines) by the proposed model
account for the observed differences between
triaxial compression and triaxial extension
tests, though the dotted lines by the Cam-
clay model do not.
~ Fig. 15 shows analytical results of triaxial
compression, triaxial extension and plane
strain tests under constant minor principal
stress (03;=196 kN/m?) in terms of the rela-
tion between ¢, o; and (e¢; and &;). In this
figure each end of the calculated curves

oF T 3= 196 kN/m?
= comp.
=]
6t ———— ext,
——- plane strain

-26 =T 0 10 20 0
€3C%) €1C%)

Fig. 15 Calculated stress-strain curves in
triaxial compression, triaxial exten-
sion and plane strain tests under a
constant minor principal stress

represents the stress condition at failure
which is determined by the criterion based
on the SMP in Fig.5. It is seen from Fig.
15 that while the stress ratio at failure (
oi0s) s under both triaxial compression and
extension conditions is 3.5, the ratio (g,/0;)
under the plane strain condition is 4.24 and
is greater than that under triaxial condi-
tions.

Finally, let us analyze pure shear tests
in order to check the validity of the pro-
posed model when the principal stress axes
rotate. As shown in Fig. 16, a state of pure
shear is produced by applying a shear stress
increment 47,, to an element gradually under
the condition that normal stresses ¢, o,
and o, are kept constant.

Analytical results are shown in Fig. 17
with respect to the relation among 7.,/0,,,
72y and e, where ¢,, denotes the mean
principal stress before and during shear. In
this figure, the solid lines represent the re-
sults on the clay after Kj-consolidation (
K, value is assumed to be 0.5) and the

Pure Shear
?3( 8Zxy
X
. ¥
a7xy
A
Oz Cx,Cy,Oz : const.

Fig. 16. Diagram for explanation of
pure shear condition
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Fig. 17. Calculated stress-strain curve in
pure shear tests on samples after K,-
consolidation and isotropic consolida-

tion
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0 o1 0z 03 04_05 06 07
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Fig. 18. Calculated directions of the ma-
jor principal axes of the strain incre-
ment, the stress and the stress incre-
ment in pure shear test on sample
after Ky,-consolidation

broken lines the results after isotropic con-
solidation.  Fig.18 shows the analytical
directions of axes of the major principal
strain increment (de,), the major principal
stress (o,) and the major principal stress
increment (do,) in the pure shear test on
the sample after Ky—consolidation. It appears
that the direction of de, is between the direc-
tion of ¢, and the direction of do; at a low
stress level but converges to the direction of
o, as the stress level increases. This tendency
is due to the fact that as the shear stress 7,
increases, the plastic strain becomes large in
comparison with the elastic strain. This is
because it is assumed in analysis that the
direction of the principal axes of the plastic
strain increment, the principal stress and z;;

coincide, and the elastic strain increment and
the stress increment have the same principal
axes. It is obvious from this figure that
the analysis here holds even when the
principal stress axes rotate. '

CONCLUSIONS
The main results of this paper are sum-

merized as follows:

(1) A new mechanical quantity ¢;; is
proposed by reconsidering the concept of the
extended “Spatial Mobilized Plane” (briefly
SMP*) which has been introduced in order
to analyze the mechanical behavior of soils
in three-dimensional stresses. Here, the
mechanical quantity is a symmetrical tensor
whose principal values are ¢;=0;-a;,(:=1,2,
3), where o¢; is the principal stresses and
a; the direction cosines of the SMP, and
the principal axes of #;; and the stress tensor
coincide. »

(2) The mechanical quantity ¢;; is ap-
plied to the Cam-clay model which is one
of the simplest elastoplastic constitutive
models for soils. According to the Cam-
clay model, the behavior of soils in triaxial
extension conditions andf/or three different
principal stress conditions cannot be analyzed
on the basis of the values of soil parameters
obtained from tests in triaxial compression
conditions.  However, the ¢;; Cam-clay
model proposed here can appropriately de-
scribe the soil behaviors in general stress
conditions involving the unified soil para-
meters. The soil parameters in the pro-
posed model are the same as those in the
primary model. The validity of the pro-
posed model is confirmed by the results of
drained and undrained shear tests on normal-
ly consolidated clay under triaxial compres-
sion and triaxial extension conditions and
comparison with the true triaxial tests re-
ported before.

Although in the present paper the me-
chanical quantity z;; is adapted to the Cam-
clay model alone as an example, this ¢,
is applicable to any other elastoplastic con-
stitutive model whose validity has been
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checked only in triaxial compression condi-
tions, extending it to the model which is
valid in three-dimensional stresses.
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NOTATION
ay, @, az=direction cosines of the normal of the
SMP

E,=tangential Young’s modulus in the
elastic component
F=yield function
J1, Jo, Js=first, second and third stress invariants
q=(1/V2){(6:—0)2+ (65— 03)2+ (03— 02} /2
R =major-minor principal stress ratio under
triaxial compression condition
11, ts, ts=principal values of the proposed mecha-
nical quantity (=0;-a; (i=1,2,3))
t;;=proposed mechanical quantity
X =tgyp/osup=Ig/tn
Y =degyp*/dy sup™
dysup*=parallel component of
strain increment vector to the SMP

the principal

deyy=strain increment tensor
deg= (v 2 [3){(de;—des)?+ (dey—des)?
+(deg—dey)?V/?
dey=volumetric strain increment (=de;+de;
+deg)
degyp®=normal component of
strain increment vector to the SMP
f=angle of radial stress paths from o
direction on the octahedral plane
t=swelling index (=0.434C,)
A=compression index (=0.434C,)
M=soil parameter in the Cam-clay model
(=(g/p)y in normally consolidated clay)
v.=Poisson’s ratio in the elastic component

the principal

g;;=stress tensor

;¢j=“second stress tensor” difined by Satake
(1982)

om=p=mean principal stress (=(1/3)(o;+02+
73)) :
osup=fy=normal stress on the SMP .
Tgup=Ig=shear stress on the SMP
¢;5=~fabric tensor

subscript

f + at failure condition

0 : at initial condition
(comp.) : under triaxial compression condition
superscript

e : elastic component

b : plastic component
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APPENDIX 1

Although the yield function f is given
as a function of the principal values of #;
as is seen from Egs. (8), (9), (22) and (23),
the derivative 8f]/dt;; can be calculated as
follows:

0f _0f 0t

6t“_ 0t 6t“
_< 0f 0Oty | of ats>. 0ty
T\ 0ty 0t, Ots 0tp) 0ty
_( af . atN + 6f . at,g). ao'k
- atN 8tk 6ts atk 00‘“
This is because t;; is a symmetrical tensor
written in terms of the stress tensor oj;

(AD

and the directions of the principal axes of
t;; coincide with those of the stress. For
example, the derivative 9f]dt;; is calculated
as follows under the plane strain condition:
In Eq. (A1), the expressions of 9f/d¢y and
0f]ots are obtained from Eg.(22) or (23),
and 8ty/dt, and dtg/dt, are given on refer-
ring to Egs. (8) and (9) respectively. If we
assume that deg=deys=de;3=0 and gy =0;3=

-0, there are following relations between

the principal stresses (o; and ¢;) and the
stresses (041, Ozp Oz and gap).

0'1':_;'(011‘[‘0'22) + 12

1 (A2)
0'2='2“(0'11+0'22> — 12
where
) - 2
I:<"qil’2~0'&> +0120'21 (A.?))
Therefore, the derivative 8t,/0t;;=00:/00:;
is expressed as,
1
22
0t 1 1 Ad
9.2 ool (A4
0ty 1 o i
6t12 hnl 2 6211
0ty _
Ot =1
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APPENDIX 2

Table A1l. Comparison between “Cam-clay model (modif.)” and “t;; Cam-clay

model (modif.)”

constitutive model

‘ Cam-caly (modif.)

t;; Cam-clay (modif.)

. stress parameters and
plastic strain increment
parameters used in
eachfmodel

?=—1—(01+02+03)

'75«/(01"62)2'*'(02*03)2'\"(03—01)2
de,P=der? +de? +dey?

V2

deg?

= v-x/(deﬂ’—dez")2+ (des? —des?)2+ (des? —d,P)?

|

!

in =t1¢1+fza2+t3d3

ts =+ (hay— 120102+ (baa3— t10) 2+ (L0, — £1a3)?

degyp*?=dePay+dePas+desPay

drsyp*? =+ (desPay~desPa)?+ (desPas— desPay)?
F(desPa—dePa)?

. stress ratio-plastic
strain increment ratio
relation

de,/deg?=(M2—1/2 1), 1=a/p
where, M=(q/0)s=3(Rs~1)/(Rr+2)

desyp*?/dr sy p*?=(X2=-X8/2X)+ Y7y,
X——ts/fN

Yf—(l—«/fen/{«/z WRs+0.5)}

. strain hardening &,?
parameter <e,,7’={(Z—m)/(1+eo)}ln(p/po) ) same as the left
under constant stress ratio
. yield function 2—::[1 2 f’i 27)‘a'77] » .—IC[ In J‘ 2X.dX
= — — =0 = P=
i v ol By vl I=1 0 X212V, X+Xf2] &"=0
. associated flow rule of of
P e P .
de;;P=4 205; de;iP=A T
of Of 0e,? Bf ) df of 0e,” of
where, A=-— ‘do; (——-———— hera, A=——"—. ( _._”___.__)
T 003 ; 0”/ 0e,? dep? Oopy whera, A= 00 do; / 0e,? Bey? 0ty
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